期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
An ensemble-based likelihood ratio approach for family-based genomic risk prediction
1
作者 Hui AN Chang-shuai WEI +4 位作者 Oliver WANG Da-hui WANG Liang-wen XU Qing LU Cheng-yin YE 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2018年第12期935-947,共13页
Objective: As one of the most popular designs used in genetic research, family-based design has been well recognized for its advantages, such as robustness against population stratification and admixture. With vast am... Objective: As one of the most popular designs used in genetic research, family-based design has been well recognized for its advantages, such as robustness against population stratification and admixture. With vast amounts of genetic data collected from family-based studies, there is a great interest in studying the role of genetic markers from the aspect of risk prediction. This study aims to develop a new statistical approach for family-based risk prediction analysis with an improved prediction accuracy compared with existing methods based on family history. Methods: In this study, we propose an ensemble-based likelihood ratio(ELR) approach, Fam-ELR, for family-based genomic risk prediction. Fam-ELR incorporates a clustered receiver operating characteristic(ROC) curve method to consider correlations among family samples, and uses a computationally efficient tree-assembling procedure for variable selection and model building. Results: Through simulations, Fam-ELR shows its robustness in various underlying disease models and pedigree structures, and attains better performance than two existing family-based risk prediction methods. In a real-data application to a family-based genome-wide dataset of conduct disorder, Fam-ELR demonstrates its ability to integrate potential risk predictors and interactions into the model for improved accuracy, especially on a genome-wide level. Conclusions: By comparing existing approaches, such as genetic risk-score approach, Fam-ELR has the capacity of incorporating genetic variants with small or moderate marginal effects and their interactions into an improved risk prediction model. Therefore, it is a robust and useful approach for high-dimensional family-based risk prediction, especially on complex disease with unknown or less known disease etiology. 展开更多
关键词 Family-based study genetic risk prediction High-dimensional data
原文传递
全基因组关联研究与复杂疾病风险预测的现状与展望 被引量:10
2
作者 沈洪兵 靳光付 《中华流行病学杂志》 CAS CSCD 北大核心 2011年第7期643-649,共7页
人类基因组计划(human genome project,HGP)的完成预示着生命科学研究进入了基因组时代,在利用基因组学方法进行流行病学研究的过程中产生了基因组流行病学。在人群中研究与疾病发生发展或健康相关的遗传变异,即遗传标志物(geneti... 人类基因组计划(human genome project,HGP)的完成预示着生命科学研究进入了基因组时代,在利用基因组学方法进行流行病学研究的过程中产生了基因组流行病学。在人群中研究与疾病发生发展或健康相关的遗传变异,即遗传标志物(genetic marker)用于疾病的预防和治疗、促进健康,是基因组流行病学的主要研究内容。 展开更多
关键词 遗传标志物 遗传风险 风险预测 全基因组关联研究 基因组流行病学
原文传递
后全基因组关联研究时代的肿瘤风险预测 被引量:2
3
作者 靳光付 沈洪兵 《中华流行病学杂志》 CAS CSCD 北大核心 2015年第10期1045-1046,共2页
全基因组关联研究(GWAS)是基因组流行病学研究中最成功的研究策略之一.迄今GWAS已经用于200余种疾病和400余类性状研究,鉴定了1.5万余个遗传位点[1].GWAS在肿瘤遗传易感位点研究中应用广泛,在乳腺癌、前列腺癌、结直肠癌、肺癌等常见... 全基因组关联研究(GWAS)是基因组流行病学研究中最成功的研究策略之一.迄今GWAS已经用于200余种疾病和400余类性状研究,鉴定了1.5万余个遗传位点[1].GWAS在肿瘤遗传易感位点研究中应用广泛,在乳腺癌、前列腺癌、结直肠癌、肺癌等常见肿瘤中均已报道了几十个遗传易感位点[2-5],这些位点解析了各种肿瘤的遗传基础,具有重要的病因学意义.同时,这些位点大部分位于一些功能未知区域和基因,为进一步阐明肿瘤发生机制提供了新思路,并为开发新的肿瘤药物靶标提供了候选[6].重要的是,这些发现在肿瘤预防方面具有重要的公共卫生学意义. 展开更多
关键词 肿瘤 风险预测 全基因组关联研究 遗传风险评分
原文传递
如何撰写高质量的流行病学研究论文 第一讲 遗传风险预测研究报告规范——GRIPS介绍
4
作者 聂晓璐 吴涛 詹思延 《中华流行病学杂志》 CAS CSCD 北大核心 2013年第5期531-535,共5页
随着遗传流行病学的兴起,复杂疾病的遗传风险预测日益得到关注。近年来,遗传风险预测研究层出不穷,但其在报告的质量和完整性方面存在很大差别。对该类研究结果的正确评价有赖于规范、准确的报告。本文介绍加强遗传风险预测研究报告... 随着遗传流行病学的兴起,复杂疾病的遗传风险预测日益得到关注。近年来,遗传风险预测研究层出不穷,但其在报告的质量和完整性方面存在很大差别。对该类研究结果的正确评价有赖于规范、准确的报告。本文介绍加强遗传风险预测研究报告质量声明(Genetic Risk Prediction Studies,GRIPS)的清单内容,并对其中一些重要条目做详细说明。 展开更多
关键词 遗传风险预测研究报告规范 遗传风险预测研究 清单
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部