BACKGROUND: Organ shortage has led to an increased number of transplantations from extended criteria donors. These organs are more vulnerable to ischemia-reperfusion injury. Thus, improvement of organ preservation is...BACKGROUND: Organ shortage has led to an increased number of transplantations from extended criteria donors. These organs are more vulnerable to ischemia-reperfusion injury. Thus, improvement of organ preservation is needed. HTK is a widely used preservation solution for static cold storage in liver transplantation. The present study was to investigate the beneficial effect of warm HTK donor pretreatment on liver preservation.展开更多
The growing demand for donor organs requires measures to expand donor pool.Those include extended criteria donors, such as elderly people, steatotic livers,donation after cardiac death, etc. Static cold storage to red...The growing demand for donor organs requires measures to expand donor pool.Those include extended criteria donors, such as elderly people, steatotic livers,donation after cardiac death, etc. Static cold storage to reduce metabolic requirements developed by Collins in late 1960 s is the mainstay and the golden standard for donated organ protection. Hypothermic machine perfusion provides dynamic organ preservation at 4°C with protracted infusion of metabolic substrates to the graft during the ex vivo period. It has been used instead of static cold storage or after it as short perfusion in transplant center. Normothermic machine perfusion(NMP) delivers oxygen, and nutrition at physiological temperature mimicking regular environment in order to support cellular function. This would minimize effects of ischemia/reperfusion injury.Potentially, NMP may help to estimate graft functionality before implantation into a recipient. Clinical studies demonstrated at least its non-inferiority or better outcomes vs static cold storage. Regular grafts donated after brain death could be safely preserved with convenient static cold storage. Except for prolonged ischemia time where hypothermic machine perfusion started in transplant center could be estimated to provide possible positive reconditioning effect. Use of hypothermic machine perfusion in regular donation instead of static cold storage or in extended criteria donors requires further investigation. Multicenter randomized clinical trial supposed to be completed in December 2021. Extended criteria donors need additional measures for graft storage and assessment until its implantation. NMP is actively evaluating promising method for this purpose.Future studies are necessary for precise estimation and confirmation to issue clinical practice recommendations.展开更多
AIM: To optimize the perfusates used for hypothermicmachine perfusion(HMP).METHODS: Sprague-Dawley rats were assigned randomly to three groups(n = 12 per group) that received either saline, University of Wisconsin col...AIM: To optimize the perfusates used for hypothermicmachine perfusion(HMP).METHODS: Sprague-Dawley rats were assigned randomly to three groups(n = 12 per group) that received either saline, University of Wisconsin coldstorage solution(UW) or histidine-tryptophan-ketoglutarate solution(HTK) as the perfusate. Each group was divided into two subgroups: static cold storage(SCS) and HMP(n = 6 per subgroup). The liver graft was retrieved according to the method described by Kamada. For the SCS group, the graft was directly placed into cold perfusate(0-4?℃) for 6 h after liver isolation while the portal vein of the graft was connected to the perfusion machine for the HMP group. Then the perfusates were collected at different time points for analysis of aspartate aminotransferase(AST), alanine transaminase(ALT) and lactate dehydrogenase(LDH) levels. Liver tissues were obtained for evaluation of histology, dry/wet weight(D/W) ratio, and malondialdehyde(MDA) and adenosine-triphosphate(ATP) levels. The portal vein pressure and velocity were monitored in real time in all HMP subgroups.RESULTS: Comparison of HMP and SCS: Regardless of the perfusate, HMP improved the architecture of donor graft in reducing the congestion around sinusoids and central vein and maintaining sinusoid lining in morphology; HMP improved liver function in terms of ALT, AST and LDH, especially during the 3-6 h period(SCS vs HMP using saline: ALT3, 225.00 ± 105.62 vs 49.50 ± 18.50, P = 0.047; LDH3, 1362.17 ± 563.30 vs 325.75 ± 147.43, P = 0.041; UW: LDH6, 2880.14 ± 948.46 vs 2135.00 ± 174.27, P = 0.049; HTK, AST6, 307.50 ± 52.95 vs 185.20 ± 20.46, P = 0.041); HMP decreased MDA level(saline, 2.79 ± 0.30 vs 1.09 ± 0.09, P = 0.008; UW, 3.01 ± 0.77 vs 1.23 ± 0.68, P = 0.005; HTK, 3.30 ± 0.52 vs 1.56 ± 0.22, P = 0.006). Comparison among HMP subgroups: HTK showed less portal vein resistance than UW and saline(vs saline, 3.41 ± 0.49 vs 5.00 ± 0.38, P < 0.001; vs UW, 3.41 ± 0.49 vs 4.52 ± 0.63, P = 0.007); UW reduced edema most efficiently(vs saline, 0.68 ± 0.02 vs 0.79 ± 0.05, P = 0.013), while HTK maintained ATP levels best(vs saline, 622.60 ± 29.11 vs 327.43 ± 44.66, P < 0.001; vs UW, 622.60 ± 29.11 vs 301.80 ± 37.68, P < 0.001).CONCLUSION: HMP is superior to SCS in maintaining both architecture and function of liver grafts. Further, HTK was found to be the optimal perfusate for HMP.展开更多
基金supported by a grant of"Else-Kroner Fresenius Stiftung"(p49/07//A68/07)
文摘BACKGROUND: Organ shortage has led to an increased number of transplantations from extended criteria donors. These organs are more vulnerable to ischemia-reperfusion injury. Thus, improvement of organ preservation is needed. HTK is a widely used preservation solution for static cold storage in liver transplantation. The present study was to investigate the beneficial effect of warm HTK donor pretreatment on liver preservation.
文摘The growing demand for donor organs requires measures to expand donor pool.Those include extended criteria donors, such as elderly people, steatotic livers,donation after cardiac death, etc. Static cold storage to reduce metabolic requirements developed by Collins in late 1960 s is the mainstay and the golden standard for donated organ protection. Hypothermic machine perfusion provides dynamic organ preservation at 4°C with protracted infusion of metabolic substrates to the graft during the ex vivo period. It has been used instead of static cold storage or after it as short perfusion in transplant center. Normothermic machine perfusion(NMP) delivers oxygen, and nutrition at physiological temperature mimicking regular environment in order to support cellular function. This would minimize effects of ischemia/reperfusion injury.Potentially, NMP may help to estimate graft functionality before implantation into a recipient. Clinical studies demonstrated at least its non-inferiority or better outcomes vs static cold storage. Regular grafts donated after brain death could be safely preserved with convenient static cold storage. Except for prolonged ischemia time where hypothermic machine perfusion started in transplant center could be estimated to provide possible positive reconditioning effect. Use of hypothermic machine perfusion in regular donation instead of static cold storage or in extended criteria donors requires further investigation. Multicenter randomized clinical trial supposed to be completed in December 2021. Extended criteria donors need additional measures for graft storage and assessment until its implantation. NMP is actively evaluating promising method for this purpose.Future studies are necessary for precise estimation and confirmation to issue clinical practice recommendations.
基金Supported by National Science and Technology Major Project,No.2012ZX10002-017Natural Science Foundation of China for Innovative Research Group,No.81121002+4 种基金National Natural Science Foundation of China,No.81000137 and No.81470891The Qianjiang Talent Program of Zhejiang Province,China,No.2012R10045the Scientific Research Program for the Returned Overseas Chinese Scholars,Ministry of Health,China,No.J20112008National High Technology Research and Development Program of China for Young Scientists(863 Program),No.2015AA020923Ministry of Education,Zhejiang Province,China,No.Y201328095
文摘AIM: To optimize the perfusates used for hypothermicmachine perfusion(HMP).METHODS: Sprague-Dawley rats were assigned randomly to three groups(n = 12 per group) that received either saline, University of Wisconsin coldstorage solution(UW) or histidine-tryptophan-ketoglutarate solution(HTK) as the perfusate. Each group was divided into two subgroups: static cold storage(SCS) and HMP(n = 6 per subgroup). The liver graft was retrieved according to the method described by Kamada. For the SCS group, the graft was directly placed into cold perfusate(0-4?℃) for 6 h after liver isolation while the portal vein of the graft was connected to the perfusion machine for the HMP group. Then the perfusates were collected at different time points for analysis of aspartate aminotransferase(AST), alanine transaminase(ALT) and lactate dehydrogenase(LDH) levels. Liver tissues were obtained for evaluation of histology, dry/wet weight(D/W) ratio, and malondialdehyde(MDA) and adenosine-triphosphate(ATP) levels. The portal vein pressure and velocity were monitored in real time in all HMP subgroups.RESULTS: Comparison of HMP and SCS: Regardless of the perfusate, HMP improved the architecture of donor graft in reducing the congestion around sinusoids and central vein and maintaining sinusoid lining in morphology; HMP improved liver function in terms of ALT, AST and LDH, especially during the 3-6 h period(SCS vs HMP using saline: ALT3, 225.00 ± 105.62 vs 49.50 ± 18.50, P = 0.047; LDH3, 1362.17 ± 563.30 vs 325.75 ± 147.43, P = 0.041; UW: LDH6, 2880.14 ± 948.46 vs 2135.00 ± 174.27, P = 0.049; HTK, AST6, 307.50 ± 52.95 vs 185.20 ± 20.46, P = 0.041); HMP decreased MDA level(saline, 2.79 ± 0.30 vs 1.09 ± 0.09, P = 0.008; UW, 3.01 ± 0.77 vs 1.23 ± 0.68, P = 0.005; HTK, 3.30 ± 0.52 vs 1.56 ± 0.22, P = 0.006). Comparison among HMP subgroups: HTK showed less portal vein resistance than UW and saline(vs saline, 3.41 ± 0.49 vs 5.00 ± 0.38, P < 0.001; vs UW, 3.41 ± 0.49 vs 4.52 ± 0.63, P = 0.007); UW reduced edema most efficiently(vs saline, 0.68 ± 0.02 vs 0.79 ± 0.05, P = 0.013), while HTK maintained ATP levels best(vs saline, 622.60 ± 29.11 vs 327.43 ± 44.66, P < 0.001; vs UW, 622.60 ± 29.11 vs 301.80 ± 37.68, P < 0.001).CONCLUSION: HMP is superior to SCS in maintaining both architecture and function of liver grafts. Further, HTK was found to be the optimal perfusate for HMP.