This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredepend...This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredependent static flexural behavior of a functionally graded(FG)microplate subjected to mechanical loads and placed under full simple supports.In the formulation,we select the transverse stress and displacement components and their first-and second-order derivatives as primary variables.Then,we set up the differential reproducing conditions(DRCs)to obtain the shape functions of the Hermitian C^(2) differential reproducing kernel(DRK)interpolant’s derivatives without using direct differentiation.The interpolant’s shape function is combined with a primitive function that possesses Kronecker delta properties and an enrichment function that constituents DRCs.As a result,the primary variables and their first-and second-order derivatives satisfy the nodal interpolation properties.Subsequently,incorporating ourHermitianC^(2)DRKinterpolant intothe strong formof the3DCCST,we develop a DRKIM method to analyze the FG microplate’s 3D microstructure-dependent static flexural behavior.The Hermitian C^(2) DRKIM method is confirmed to be accurate and fast in its convergence rate by comparing the solutions it produces with the relevant 3D solutions available in the literature.Finally,the impact of essential factors on the transverse stresses,in-plane stresses,displacements,and couple stresses that are induced in the loaded microplate is examined.These factors include the length-to-thickness ratio,the material length-scale parameter,and the inhomogeneity index,which appear to be significant.展开更多
The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Aut...The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Autodesk Inventor 2017 software. The modelled piston was then imported into Ansys for further analysis. Static structural and thermal analysis were carried out on the pistons of the four different materials namely: Al 413 alloy, Al 384 alloy, Al 390 alloy and Al332 alloy to determine the total deformation, equivalent Von Mises stress, maximum shear stress, and the safety factor. The results of the study revealed that, aluminium 332 alloy piston deformed less compared to the deformations of aluminium 390 alloy piston, aluminium 384 alloy piston and aluminium 413 alloy piston. The induced Von Mises stresses in the pistons of the four different materials were found to be far lower than the yield strengths of all the materials. Hence, all the selected materials including the implementing material have equal properties to withstand the maximum gas load. All the selected materials were observed to have high thermal conductivity enough to be able to withstand the operating temperature in the engine cylinders.展开更多
The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabil...The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road.展开更多
In recent years,the rapid development of computer software has led to numerous security problems,particularly software vulnerabilities.These flaws can cause significant harm to users’privacy and property.Current secu...In recent years,the rapid development of computer software has led to numerous security problems,particularly software vulnerabilities.These flaws can cause significant harm to users’privacy and property.Current security defect detection technology relies on manual or professional reasoning,leading to missed detection and high false detection rates.Artificial intelligence technology has led to the development of neural network models based on machine learning or deep learning to intelligently mine holes,reducing missed alarms and false alarms.So,this project aims to study Java source code defect detection methods for defects like null pointer reference exception,XSS(Transform),and Structured Query Language(SQL)injection.Also,the project uses open-source Javalang to translate the Java source code,conducts a deep search on the AST to obtain the empty syntax feature library,and converts the Java source code into a dependency graph.The feature vector is then used as the learning target for the neural network.Four types of Convolutional Neural Networks(CNN),Long Short-Term Memory(LSTM),Bi-directional Long Short-Term Memory(BiLSTM),and Attention Mechanism+Bidirectional LSTM,are used to investigate various code defects,including blank pointer reference exception,XSS,and SQL injection defects.Experimental results show that the attention mechanism in two-dimensional BLSTM is the most effective for object recognition,verifying the correctness of the method.展开更多
Although static program analysis methods are frequently employed to enhance software quality,their efficiency in commercial settings is limited by their high false positive rate.The EUGENE tool can effectively lower t...Although static program analysis methods are frequently employed to enhance software quality,their efficiency in commercial settings is limited by their high false positive rate.The EUGENE tool can effectively lower the false positive rate.However,in continuous integration(CI)environments,the code is always changing,and user feedback from one version of the software cannot be applied to a subsequent version.Additionally,people find it difficult to distinguish between true positives and false positives in the analytical output.In this study,we developed the EUGENE-CI technique to address the CI problem and the EUGENE-rank lightweight heuristic algorithm to rate the reports of the analysis output in accordance with the likelihood that they are true positives.On the three projects ethereum,go-cloud,and kubernetes,we assessed our methodologies.According to the trial findings,EUGENE-CI may drastically reduce false positives while EUGENE-rank can make it much easier for users to identify the real positives among a vast number of reports.We paired our techniques with GoInsight~1 and discovered a vulnerability.We also offered a patch to the community.展开更多
KK tubular joints are used to build jacket-type offshore structures. These joints are mostly made up of structural steel. These joints can withstand yield, buckling, and lateral loads depending on the structure’s des...KK tubular joints are used to build jacket-type offshore structures. These joints are mostly made up of structural steel. These joints can withstand yield, buckling, and lateral loads depending on the structure’s design and environment. In this study, the Finite Element Model of the KK-type tubular joint has been created, and analysis has been performed under static loading using the Static Structural analysis system of ANSYS 19.2 commercial software and structural mechanics module of COMSOL Multiphysics. The KK tubular model is analyzed under compressive load conditions, and the resulting stress, strain, and deformation values are tabulated in both graphical and tabular form. This study includes a comparison of the outcomes from both commercial software. The results highlight that maximum stress, strain, and deformation values decrease as joint thickness increases. This study holds significant relevance in advancing the understanding of tubular KK joints and their response to compressive loading. The insights derived from the analysis have the potential to contribute to the development of more robust and reliable tubular KK joints in various engineering and structural applications. .展开更多
The cowcatcher is one of the unique devices at the front end of the train, which can remove obstacles on the track by crashing before the vehicle body to ensure the safety of the train. When a collision accident happe...The cowcatcher is one of the unique devices at the front end of the train, which can remove obstacles on the track by crashing before the vehicle body to ensure the safety of the train. When a collision accident happens, the cowcatcher serves as the first energy-absorbing structure to dissipate and guide the collision energy. The design of the existing cowcatcher of multiple units generally focuses on the good ability to remove obstacles, while the secondary function, the crashworthiness of orderly deformation under collision, still needs further research. In this study, a finite element model of structural static load and collision analysis was established under standard EN 15227, with the cowcatcher for 160 km/h train as the prototype. Then the solution and simulation process was accomplished under the environment of ANSYS and LS-DYNA. The analysis results showed that the structural static strength of the current cowcatcher met the requirements of the standard EN 15227, and the longitudinal stiffness was evenly distributed. When removing the obstacles with low mass, the impact force was small and the structure would not produce obvious deformation;when removing the obstacles with large mass, the impact force was large and the shear fracture might occur at the connection of the cowcatcher.展开更多
The relationship between the Hoek-Brown parameters and the mechanical response of circular tunnels is il-lustrated. Closed-form and approximate solutions are given for the extent of the plastic zone and the stress and...The relationship between the Hoek-Brown parameters and the mechanical response of circular tunnels is il-lustrated. Closed-form and approximate solutions are given for the extent of the plastic zone and the stress and dis-placement fields under axisymmetrical and asymmetric stress conditions. For the same rock masses and under axisym-metrical stress conditions,the radius of the plastic zone in terms of Hoek-Brown criterion is generally an approximation of the radius in terms of the Mohr-Coulomb criterion. The radius in terms of the Hoek-Brown criterion is larger under low stress conditions. For poor quality rock masses (GSI<25),measures (such as grouting,setting rock bolts,etc.) that improve the GSI of rock masses are effective in improving the stability of tunnels. It is not advisable to improve the sta-bility of the tunnels by providing a small support resistance p through shotcrete,except for very poor quality jointed rock masses. Without reference to the quality of the rock mass,the disturbance factor D should not less than 0.5. Meas-ures which disturb rock masses during tunnel construction should be taken carefully when the tunnel depth increases.展开更多
In this work, the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements. The shape functions of the transition plate elements are derived based...In this work, the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements. The shape functions of the transition plate elements are derived based on a practical rule. The transition plate elements are all quadrilateral and can be used to obtain efficient finite element models using minimum number of elements. The mesh convergence rates of the models including the transition elements are compared with the regular element models. To verify the developed elements, simple tests are demonstrated and various elasto-plastic problems are solved. Their results are compared with ANSYS results.展开更多
This paper establishes an anisotropic plastic material model to analyze the elasto-plastic behavior of masonry in plane stress state.Being an anisotropic material,masonry has different constitutive relation and fractu...This paper establishes an anisotropic plastic material model to analyze the elasto-plastic behavior of masonry in plane stress state.Being an anisotropic material,masonry has different constitutive relation and fracture energies along each orthotropic axes.Considering the unique material properties of masonry,a new yield criterion for masonry is proposed combining the Hill's yield criterion and the Rankine's yield criterion.The new yield criterion not only introduces compression friction coefficient of shear but also considers yield functions for independent stress state along two material axes of tension.To solve the involved nonlinear equations in numerical analysis,several nonlinear methods are implemented,including Newton-Raphson method for nonlinear equations and Implicit Euler backward mapping algorithm to update stresses.To verify the proposed material model of masonry,a series of tests are operated.The simulation results show that the new developed material model implements successfully.Compared with isotropic material model,the proposed model performs better in elasto-plastic analysis of masonry in plane stress state.The proposed anisotropic model is capable of simulating elasto-plastic behavior of masonry and can be used in related applications.展开更多
The rigid body limit equilibrium method(RBLEM) and finite element method(FEM) are two widely used approaches for rock slope's stability analysis currently. RBLEM introduced plethoric assumptions; while traditional...The rigid body limit equilibrium method(RBLEM) and finite element method(FEM) are two widely used approaches for rock slope's stability analysis currently. RBLEM introduced plethoric assumptions; while traditional FEM relied on artificial factors when determining factor of safety(FOS) and sliding surfaces. Based on the definition of structure instability that an elasto-plastic structure is not stable if it is unable to satisfy simultaneously equilibrium condition, kinematical admissibility and constitutive equations under given external loads, deformation reinforcement theory(DRT) is developed. With this theory, plastic complementary energy(PCE) can be used to evaluate the overall stability of rock slope, and the unbalanced force beyond the yield surface could be the identification of local failure. Compared with traditional slope stability analysis approaches, the PCE norm curve to strength reduced factor is introduced and the unbalanced force is applied to the determination of key sliding surfaces and required reinforcement. Typical and important issues in rock slope stability are tested in TFINE(a three-dimensional nonlinear finite element program), which is further applied to several representatives of high rock slope's stability evaluation and reinforcement engineering practice in southwest of China.展开更多
The project of Xiaoxihu Yellow River Bridge in Lanzhou is chosen as partial cable-stayed bridge. To get the shear lag effect and anti-earthquake performance of the actual bridge under various loading conditions, organ...The project of Xiaoxihu Yellow River Bridge in Lanzhou is chosen as partial cable-stayed bridge. To get the shear lag effect and anti-earthquake performance of the actual bridge under various loading conditions, organic glass scaled model was adopted to have an experiment and a theory research at one time. The experiment result is the basically same as the theory calculation which proves the FEA method can well calculate shear lag effect and dynamical performance. As a result, because the bridge is located in a seismic area of 8 degree, an elasto-plastic seismic checking is performed by customized FEA program in this paper.展开更多
In order to predict the life of engineering structures, it is necessary to investigate the strain distribution in notched members. In gineral, the Uauschinger Effect of materials under cyclic loading is not negligible...In order to predict the life of engineering structures, it is necessary to investigate the strain distribution in notched members. In gineral, the Uauschinger Effect of materials under cyclic loading is not negligible, and so the anisolropic hardening model has been suggested. From the comparison between the calculated and experimental results in this paper, we can see that even the linear kinematic hardening model is quite suitable for strain analysis under cyclic loading.展开更多
Bearing failure of composite laminate is very complicated due to the complexity of different failure mechanisms and their interactions. In this paper, an elasto-plastic damage model is built up to describe the process...Bearing failure of composite laminate is very complicated due to the complexity of different failure mechanisms and their interactions. In this paper, an elasto-plastic damage model is built up to describe the process of failure in composite laminates subjected to bearing load. Non-linear behavior of composite before failure is taken into consideration by using a modified Sun-Chen one parameter plasticity model. LaRC05 failure criteria are employed to predict the initiation of failure and the evolution of failure is described by a CDM based stiffness degradation model. Both theory and some application issues like parameter determination are discussed according to phenomenon of experiments. The model is firstly validated by several experiment results of unidirectional laminate and then applicated into the progressive analysis of bearing failure in pin-loaded multidirectional laminates, both intralaminar and interlaminar damage are taken into consideration. The result of finite element analysis is compared with experiment results;it shows good agreements in both mechanical response and progress of failure, so the model can be evaluated to be effective and practical in bearing failure analysis of composite laminates.展开更多
Aim To analyse the static temperature field ofthe solid rubber tire(SRT).Methods The mechanical and thermal FE models were developed and analyzed respectively with the FE software ANSYS.Results The maximum temperature...Aim To analyse the static temperature field ofthe solid rubber tire(SRT).Methods The mechanical and thermal FE models were developed and analyzed respectively with the FE software ANSYS.Results The maximum temperature becomes higher with the higher with the higher velocity of tire and scales down slightly with the higher convection coefficients.The mixed models are reasonable.Conclusion The study on static temperature field is important and reasonable.It gives the fundament for life analysis of SRT.展开更多
The static dent resistance performance of the aluminum alloy double-curved panel formed using viscous pressure forming (VPF)was studied by finite element analysis,which mainly considers the forming process conditions....The static dent resistance performance of the aluminum alloy double-curved panel formed using viscous pressure forming (VPF)was studied by finite element analysis,which mainly considers the forming process conditions.The whole simulation consisting of three stages,i.e.,forming,spring-back and static dent resistance,was carried out continuously using the finite element code ANSYS.The influence of blank holder pressure(BHP)and the drawbead on the stiffness and the static dent resistance of the panels formed using VPF was analyzed.The results show that the adequate setting of the drawbead can increase the plastic deformation of the double-curved panel,which is beneficial to the initial stiffness and the static dent resistance.There is an optimum BHP range for the stiffness and the static dent resistance.展开更多
This paper presents a procedure to calculate the safety factor against sliding of a marine gravity structure subjected to a combination of static and cyclic loads. This procedure claculates the stress at the sliding s...This paper presents a procedure to calculate the safety factor against sliding of a marine gravity structure subjected to a combination of static and cyclic loads. This procedure claculates the stress at the sliding surface by the finite element method (FEM) and takes the dynamic properties of clay into account. With this procedure, the stability of a Bohai oil-drilling ship is analyzed. The calculated safety factor is much smaller than 1, indicating that this oil-drilling ship would fail just as what had happened to it.展开更多
I IntroductionSmartphones have become more complex in terms of functions and third-party applications, and this makes lhem a living space for malware. People store private information such as accounts and passwordson ...I IntroductionSmartphones have become more complex in terms of functions and third-party applications, and this makes lhem a living space for malware. People store private information such as accounts and passwordson their smartphones, the loss of which could have serious con- sequences.展开更多
Based on the method of reverberation ray matrix(MRRM), a reverberation matrix for planar framed structures composed of anisotropic Timoshenko(T) beam members containing completely hinged joints is developed for st...Based on the method of reverberation ray matrix(MRRM), a reverberation matrix for planar framed structures composed of anisotropic Timoshenko(T) beam members containing completely hinged joints is developed for static analysis of such structures.In the MRRM for dynamic analysis, amplitudes of arriving and departing waves for joints are chosen as unknown quantities. However, for the present case of static analysis, displacements and rotational angles at the ends of each beam member are directly considered as unknown quantities. The expressions for stiffness matrices for anisotropic beam members are developed. A corresponding reverberation matrix is derived analytically for exact and unified determination on the displacements and internal forces at both ends of each member and arbitrary cross sectional locations in the structure. Numerical examples are given and compared with the finite element method(FEM) results to validate the present model. The characteristic parameter analysis is performed to demonstrate accuracy of the present model with the T beam theory in contrast with errors in the usual model based on the Euler-Bernoulli(EB) beam theory. The resulting reverberation matrix can be used for exact calculation of anisotropic framed structures as well as for parameter analysis of geometrical and material properties of the framed structures.展开更多
In an incremental dynamic analysis(IDA) using a set of ground motion records,nonlinear time history analysis needs to be performed on structures.It is well recognized that IDA calls for high computational efforts and ...In an incremental dynamic analysis(IDA) using a set of ground motion records,nonlinear time history analysis needs to be performed on structures.It is well recognized that IDA calls for high computational efforts and the results are highly sensitive to selected ground motions.As a result,alternative static methods are needed.This study aims to introduce a new double-stage(N1- N2) static method to estimate capacity curves of MR frames.The technique is regulated to resemble IDA results with specific emphasis on near-field ground motions.Using an ensemble of 56 near-field earthquake records,required ID As have been carried out for SAC-Los Angeles 3-,9- and 20-story buildings and an additional 15-story building.The results of the proposed static method are compared with those from IDA,displacement-based adaptive procedure(DAP),and multimodal procedure(MMP).The results indicate that in addition to enhanced accuracy,very little time is required in the case of N1-N2 method.Thus,for the 3-story structure,the time required is less than 1 minute.The proposed N1-N2 method shows the best accuracy in terms of lateral mechanisms for the 15-story frame while for the other cases,the first mode load pattern leads to the best accuracy.展开更多
基金supported by a grant from the National Science and Technology Council of the Republic of China(Grant Number:MOST 112-2221-E-006-048-MY2).
文摘This work develops a Hermitian C^(2) differential reproducing kernel interpolation meshless(DRKIM)method within the consistent couple stress theory(CCST)framework to study the three-dimensional(3D)microstructuredependent static flexural behavior of a functionally graded(FG)microplate subjected to mechanical loads and placed under full simple supports.In the formulation,we select the transverse stress and displacement components and their first-and second-order derivatives as primary variables.Then,we set up the differential reproducing conditions(DRCs)to obtain the shape functions of the Hermitian C^(2) differential reproducing kernel(DRK)interpolant’s derivatives without using direct differentiation.The interpolant’s shape function is combined with a primitive function that possesses Kronecker delta properties and an enrichment function that constituents DRCs.As a result,the primary variables and their first-and second-order derivatives satisfy the nodal interpolation properties.Subsequently,incorporating ourHermitianC^(2)DRKinterpolant intothe strong formof the3DCCST,we develop a DRKIM method to analyze the FG microplate’s 3D microstructure-dependent static flexural behavior.The Hermitian C^(2) DRKIM method is confirmed to be accurate and fast in its convergence rate by comparing the solutions it produces with the relevant 3D solutions available in the literature.Finally,the impact of essential factors on the transverse stresses,in-plane stresses,displacements,and couple stresses that are induced in the loaded microplate is examined.These factors include the length-to-thickness ratio,the material length-scale parameter,and the inhomogeneity index,which appear to be significant.
文摘The main objective of this research was to examine the suitability of aluminium alloy to design a piston of an internal combustion engine for improvement in weight and cost reduction. The piston was modelled using Autodesk Inventor 2017 software. The modelled piston was then imported into Ansys for further analysis. Static structural and thermal analysis were carried out on the pistons of the four different materials namely: Al 413 alloy, Al 384 alloy, Al 390 alloy and Al332 alloy to determine the total deformation, equivalent Von Mises stress, maximum shear stress, and the safety factor. The results of the study revealed that, aluminium 332 alloy piston deformed less compared to the deformations of aluminium 390 alloy piston, aluminium 384 alloy piston and aluminium 413 alloy piston. The induced Von Mises stresses in the pistons of the four different materials were found to be far lower than the yield strengths of all the materials. Hence, all the selected materials including the implementing material have equal properties to withstand the maximum gas load. All the selected materials were observed to have high thermal conductivity enough to be able to withstand the operating temperature in the engine cylinders.
文摘The network of Himalayan roadways and highways connects some remote regions of valleys or hill slopes,which is vital for India’s socio-economic growth.Due to natural and artificial factors,frequency of slope instabilities along the networks has been increasing over last few decades.Assessment of stability of natural and artificial slopes due to construction of these connecting road networks is significant in safely executing these roads throughout the year.Several rock mass classification methods are generally used to assess the strength and deformability of rock mass.This study assesses slope stability along the NH-1A of Ramban district of North Western Himalayas.Various structurally and non-structurally controlled rock mass classification systems have been applied to assess the stability conditions of 14 slopes.For evaluating the stability of these slopes,kinematic analysis was performed along with geological strength index(GSI),rock mass rating(RMR),continuous slope mass rating(CoSMR),slope mass rating(SMR),and Q-slope in the present study.The SMR gives three slopes as completely unstable while CoSMR suggests four slopes as completely unstable.The stability of all slopes was also analyzed using a design chart under dynamic and static conditions by slope stability rating(SSR)for the factor of safety(FoS)of 1.2 and 1 respectively.Q-slope with probability of failure(PoF)1%gives two slopes as stable slopes.Stable slope angle has been determined based on the Q-slope safe angle equation and SSR design chart based on the FoS.The value ranges given by different empirical classifications were RMR(37-74),GSI(27.3-58.5),SMR(11-59),and CoSMR(3.39-74.56).Good relationship was found among RMR&SSR and RMR&GSI with correlation coefficient(R 2)value of 0.815 and 0.6866,respectively.Lastly,a comparative stability of all these slopes based on the above classification has been performed to identify the most critical slope along this road.
基金This work is supported by the Provincial Key Science and Technology Special Project of Henan(No.221100240100)。
文摘In recent years,the rapid development of computer software has led to numerous security problems,particularly software vulnerabilities.These flaws can cause significant harm to users’privacy and property.Current security defect detection technology relies on manual or professional reasoning,leading to missed detection and high false detection rates.Artificial intelligence technology has led to the development of neural network models based on machine learning or deep learning to intelligently mine holes,reducing missed alarms and false alarms.So,this project aims to study Java source code defect detection methods for defects like null pointer reference exception,XSS(Transform),and Structured Query Language(SQL)injection.Also,the project uses open-source Javalang to translate the Java source code,conducts a deep search on the AST to obtain the empty syntax feature library,and converts the Java source code into a dependency graph.The feature vector is then used as the learning target for the neural network.Four types of Convolutional Neural Networks(CNN),Long Short-Term Memory(LSTM),Bi-directional Long Short-Term Memory(BiLSTM),and Attention Mechanism+Bidirectional LSTM,are used to investigate various code defects,including blank pointer reference exception,XSS,and SQL injection defects.Experimental results show that the attention mechanism in two-dimensional BLSTM is the most effective for object recognition,verifying the correctness of the method.
基金the Project"Research on the protection technology of endogenous safety for industrial control system"supported by National Science and Technology Major Project(2016YFB08002)。
文摘Although static program analysis methods are frequently employed to enhance software quality,their efficiency in commercial settings is limited by their high false positive rate.The EUGENE tool can effectively lower the false positive rate.However,in continuous integration(CI)environments,the code is always changing,and user feedback from one version of the software cannot be applied to a subsequent version.Additionally,people find it difficult to distinguish between true positives and false positives in the analytical output.In this study,we developed the EUGENE-CI technique to address the CI problem and the EUGENE-rank lightweight heuristic algorithm to rate the reports of the analysis output in accordance with the likelihood that they are true positives.On the three projects ethereum,go-cloud,and kubernetes,we assessed our methodologies.According to the trial findings,EUGENE-CI may drastically reduce false positives while EUGENE-rank can make it much easier for users to identify the real positives among a vast number of reports.We paired our techniques with GoInsight~1 and discovered a vulnerability.We also offered a patch to the community.
文摘KK tubular joints are used to build jacket-type offshore structures. These joints are mostly made up of structural steel. These joints can withstand yield, buckling, and lateral loads depending on the structure’s design and environment. In this study, the Finite Element Model of the KK-type tubular joint has been created, and analysis has been performed under static loading using the Static Structural analysis system of ANSYS 19.2 commercial software and structural mechanics module of COMSOL Multiphysics. The KK tubular model is analyzed under compressive load conditions, and the resulting stress, strain, and deformation values are tabulated in both graphical and tabular form. This study includes a comparison of the outcomes from both commercial software. The results highlight that maximum stress, strain, and deformation values decrease as joint thickness increases. This study holds significant relevance in advancing the understanding of tubular KK joints and their response to compressive loading. The insights derived from the analysis have the potential to contribute to the development of more robust and reliable tubular KK joints in various engineering and structural applications. .
基金supports by the National Natural Science Foundation of China(Grant No.52172353 and 52202431).
文摘The cowcatcher is one of the unique devices at the front end of the train, which can remove obstacles on the track by crashing before the vehicle body to ensure the safety of the train. When a collision accident happens, the cowcatcher serves as the first energy-absorbing structure to dissipate and guide the collision energy. The design of the existing cowcatcher of multiple units generally focuses on the good ability to remove obstacles, while the secondary function, the crashworthiness of orderly deformation under collision, still needs further research. In this study, a finite element model of structural static load and collision analysis was established under standard EN 15227, with the cowcatcher for 160 km/h train as the prototype. Then the solution and simulation process was accomplished under the environment of ANSYS and LS-DYNA. The analysis results showed that the structural static strength of the current cowcatcher met the requirements of the standard EN 15227, and the longitudinal stiffness was evenly distributed. When removing the obstacles with low mass, the impact force was small and the structure would not produce obvious deformation;when removing the obstacles with large mass, the impact force was large and the shear fracture might occur at the connection of the cowcatcher.
基金Project 50639100 supported by the National Natural Science Foundation of China
文摘The relationship between the Hoek-Brown parameters and the mechanical response of circular tunnels is il-lustrated. Closed-form and approximate solutions are given for the extent of the plastic zone and the stress and dis-placement fields under axisymmetrical and asymmetric stress conditions. For the same rock masses and under axisym-metrical stress conditions,the radius of the plastic zone in terms of Hoek-Brown criterion is generally an approximation of the radius in terms of the Mohr-Coulomb criterion. The radius in terms of the Hoek-Brown criterion is larger under low stress conditions. For poor quality rock masses (GSI<25),measures (such as grouting,setting rock bolts,etc.) that improve the GSI of rock masses are effective in improving the stability of tunnels. It is not advisable to improve the sta-bility of the tunnels by providing a small support resistance p through shotcrete,except for very poor quality jointed rock masses. Without reference to the quality of the rock mass,the disturbance factor D should not less than 0.5. Meas-ures which disturb rock masses during tunnel construction should be taken carefully when the tunnel depth increases.
文摘In this work, the finite element analysis of the elasto-plastic plate bending problems is carried out using transition rectangular plate elements. The shape functions of the transition plate elements are derived based on a practical rule. The transition plate elements are all quadrilateral and can be used to obtain efficient finite element models using minimum number of elements. The mesh convergence rates of the models including the transition elements are compared with the regular element models. To verify the developed elements, simple tests are demonstrated and various elasto-plastic problems are solved. Their results are compared with ANSYS results.
基金Sponsored by Changjiang Scholars Program of China (Grant No.2009-37)PhD Programs Foundation of Ministry of Education of China (Grant No.20092302110046)Natural Science Foundation of Heilongjiang Province (Grant No.E200916)
文摘This paper establishes an anisotropic plastic material model to analyze the elasto-plastic behavior of masonry in plane stress state.Being an anisotropic material,masonry has different constitutive relation and fracture energies along each orthotropic axes.Considering the unique material properties of masonry,a new yield criterion for masonry is proposed combining the Hill's yield criterion and the Rankine's yield criterion.The new yield criterion not only introduces compression friction coefficient of shear but also considers yield functions for independent stress state along two material axes of tension.To solve the involved nonlinear equations in numerical analysis,several nonlinear methods are implemented,including Newton-Raphson method for nonlinear equations and Implicit Euler backward mapping algorithm to update stresses.To verify the proposed material model of masonry,a series of tests are operated.The simulation results show that the new developed material model implements successfully.Compared with isotropic material model,the proposed model performs better in elasto-plastic analysis of masonry in plane stress state.The proposed anisotropic model is capable of simulating elasto-plastic behavior of masonry and can be used in related applications.
基金Project(51479097)supported by the National Natural Science Foundation of ChinaProject(2013-KY-2)supported by State Key Laboratory of Hydroscience and Hydraulic Engineering,China
文摘The rigid body limit equilibrium method(RBLEM) and finite element method(FEM) are two widely used approaches for rock slope's stability analysis currently. RBLEM introduced plethoric assumptions; while traditional FEM relied on artificial factors when determining factor of safety(FOS) and sliding surfaces. Based on the definition of structure instability that an elasto-plastic structure is not stable if it is unable to satisfy simultaneously equilibrium condition, kinematical admissibility and constitutive equations under given external loads, deformation reinforcement theory(DRT) is developed. With this theory, plastic complementary energy(PCE) can be used to evaluate the overall stability of rock slope, and the unbalanced force beyond the yield surface could be the identification of local failure. Compared with traditional slope stability analysis approaches, the PCE norm curve to strength reduced factor is introduced and the unbalanced force is applied to the determination of key sliding surfaces and required reinforcement. Typical and important issues in rock slope stability are tested in TFINE(a three-dimensional nonlinear finite element program), which is further applied to several representatives of high rock slope's stability evaluation and reinforcement engineering practice in southwest of China.
文摘The project of Xiaoxihu Yellow River Bridge in Lanzhou is chosen as partial cable-stayed bridge. To get the shear lag effect and anti-earthquake performance of the actual bridge under various loading conditions, organic glass scaled model was adopted to have an experiment and a theory research at one time. The experiment result is the basically same as the theory calculation which proves the FEA method can well calculate shear lag effect and dynamical performance. As a result, because the bridge is located in a seismic area of 8 degree, an elasto-plastic seismic checking is performed by customized FEA program in this paper.
文摘In order to predict the life of engineering structures, it is necessary to investigate the strain distribution in notched members. In gineral, the Uauschinger Effect of materials under cyclic loading is not negligible, and so the anisolropic hardening model has been suggested. From the comparison between the calculated and experimental results in this paper, we can see that even the linear kinematic hardening model is quite suitable for strain analysis under cyclic loading.
文摘Bearing failure of composite laminate is very complicated due to the complexity of different failure mechanisms and their interactions. In this paper, an elasto-plastic damage model is built up to describe the process of failure in composite laminates subjected to bearing load. Non-linear behavior of composite before failure is taken into consideration by using a modified Sun-Chen one parameter plasticity model. LaRC05 failure criteria are employed to predict the initiation of failure and the evolution of failure is described by a CDM based stiffness degradation model. Both theory and some application issues like parameter determination are discussed according to phenomenon of experiments. The model is firstly validated by several experiment results of unidirectional laminate and then applicated into the progressive analysis of bearing failure in pin-loaded multidirectional laminates, both intralaminar and interlaminar damage are taken into consideration. The result of finite element analysis is compared with experiment results;it shows good agreements in both mechanical response and progress of failure, so the model can be evaluated to be effective and practical in bearing failure analysis of composite laminates.
文摘Aim To analyse the static temperature field ofthe solid rubber tire(SRT).Methods The mechanical and thermal FE models were developed and analyzed respectively with the FE software ANSYS.Results The maximum temperature becomes higher with the higher with the higher velocity of tire and scales down slightly with the higher convection coefficients.The mixed models are reasonable.Conclusion The study on static temperature field is important and reasonable.It gives the fundament for life analysis of SRT.
文摘The static dent resistance performance of the aluminum alloy double-curved panel formed using viscous pressure forming (VPF)was studied by finite element analysis,which mainly considers the forming process conditions.The whole simulation consisting of three stages,i.e.,forming,spring-back and static dent resistance,was carried out continuously using the finite element code ANSYS.The influence of blank holder pressure(BHP)and the drawbead on the stiffness and the static dent resistance of the panels formed using VPF was analyzed.The results show that the adequate setting of the drawbead can increase the plastic deformation of the double-curved panel,which is beneficial to the initial stiffness and the static dent resistance.There is an optimum BHP range for the stiffness and the static dent resistance.
文摘This paper presents a procedure to calculate the safety factor against sliding of a marine gravity structure subjected to a combination of static and cyclic loads. This procedure claculates the stress at the sliding surface by the finite element method (FEM) and takes the dynamic properties of clay into account. With this procedure, the stability of a Bohai oil-drilling ship is analyzed. The calculated safety factor is much smaller than 1, indicating that this oil-drilling ship would fail just as what had happened to it.
基金supported in part by the Fundamental Research Funds for the Central Universities of China (Grant No.WK0110000007)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No.20113402120026)+2 种基金the Natural Science Foundation of Anhui Province,China (Grant No. 1208085QF112)the Foundation for Young Talents in College of Anhui Province,China (GrantNo.2012SQRL001ZD)the Research Fund of ZTE Corpo ration
文摘I IntroductionSmartphones have become more complex in terms of functions and third-party applications, and this makes lhem a living space for malware. People store private information such as accounts and passwordson their smartphones, the loss of which could have serious con- sequences.
基金Project supported by the Program for New Century Excellent Talents in Universities(NCET)by the Ministry of Education of China(No.NCET-04-0373)
文摘Based on the method of reverberation ray matrix(MRRM), a reverberation matrix for planar framed structures composed of anisotropic Timoshenko(T) beam members containing completely hinged joints is developed for static analysis of such structures.In the MRRM for dynamic analysis, amplitudes of arriving and departing waves for joints are chosen as unknown quantities. However, for the present case of static analysis, displacements and rotational angles at the ends of each beam member are directly considered as unknown quantities. The expressions for stiffness matrices for anisotropic beam members are developed. A corresponding reverberation matrix is derived analytically for exact and unified determination on the displacements and internal forces at both ends of each member and arbitrary cross sectional locations in the structure. Numerical examples are given and compared with the finite element method(FEM) results to validate the present model. The characteristic parameter analysis is performed to demonstrate accuracy of the present model with the T beam theory in contrast with errors in the usual model based on the Euler-Bernoulli(EB) beam theory. The resulting reverberation matrix can be used for exact calculation of anisotropic framed structures as well as for parameter analysis of geometrical and material properties of the framed structures.
文摘In an incremental dynamic analysis(IDA) using a set of ground motion records,nonlinear time history analysis needs to be performed on structures.It is well recognized that IDA calls for high computational efforts and the results are highly sensitive to selected ground motions.As a result,alternative static methods are needed.This study aims to introduce a new double-stage(N1- N2) static method to estimate capacity curves of MR frames.The technique is regulated to resemble IDA results with specific emphasis on near-field ground motions.Using an ensemble of 56 near-field earthquake records,required ID As have been carried out for SAC-Los Angeles 3-,9- and 20-story buildings and an additional 15-story building.The results of the proposed static method are compared with those from IDA,displacement-based adaptive procedure(DAP),and multimodal procedure(MMP).The results indicate that in addition to enhanced accuracy,very little time is required in the case of N1-N2 method.Thus,for the 3-story structure,the time required is less than 1 minute.The proposed N1-N2 method shows the best accuracy in terms of lateral mechanisms for the 15-story frame while for the other cases,the first mode load pattern leads to the best accuracy.