期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Static pressure redistribution mechanism of non-axisymmetric endwall based on radial equilibrium
1
作者 Hanwen Guo Donghai Jin +1 位作者 Xiwu Liu Xingmin Gui 《Propulsion and Power Research》 SCIE 2023年第4期505-522,共18页
Non-axisymmetric endwall contouring has been proved to be an effective flow control technique in turbomachinery.Several different flow control mechanisms and qualitative design strategies have been proposed.The endwal... Non-axisymmetric endwall contouring has been proved to be an effective flow control technique in turbomachinery.Several different flow control mechanisms and qualitative design strategies have been proposed.The endwall contouring mechanism based on the flow governing equations is significant for exploring the quantitative design strategies of the nonaxisymmetric endwall contouring.In this paper,the static pressure redistribution mechanism of endwall contouring was explained based on the radial equilibrium equation.A quantified expression of the static pressure redistribution mechanism was proposed.Compressor cascades were simulated using an experimentally validated numerical method to validate the static pressure redistribution mechanism.A geometric parameter named meridional curvature(Cme)is defined to quantify the concave and convex features of the endwall.Results indicate that the contoured endwall changes the streamline curvature,inducing a centrifugal acceleration.Consequently,the radial pressure gradient is reformed to maintain the radial equilibrium.The convex endwall represented by positive Cme increases the radial pressure gradient,decreasing the endwall static pressure,while the concave endwall represented by negative Cme increases the endwall static pressure.The Cme helps to establish the quantified relation between the change in the endwall radial pressure gradient and the endwall geometry.Besides,there is a great correlation between the distributions of the Cme and the change in the endwall static pressure.It can be concluded that the parameter Cme can be considered as a significant parameter to parameterize the endwall surface and to explore the quantitative design strategies of the nonaxisymmetric endwall contouring. 展开更多
关键词 TURBOMACHINERY Flow control Non-axisymmetric endwall static pressure redistribution Radial equilibrium equation
原文传递
Lateral Pressure of RC Silos with Static and Dynamic Granular Materials
2
作者 Kunpeng Guo Changdong Zhou +1 位作者 Xiaoyang Zhang Lingkai Meng 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第4期92-98,共7页
This paper aims at analyzing material-induced lateral pressure of RC cylinder silo in both static and dynamic condition using the finite element method( FEM). In the finite element software ABAQUS,concrete material is... This paper aims at analyzing material-induced lateral pressure of RC cylinder silo in both static and dynamic condition using the finite element method( FEM). In the finite element software ABAQUS,concrete material is modeled by concrete damaged plasticity model,and stored materials in silo is modeled by the hypoplastic theory.In terms of numerical model,shell elements( S4R) and solid elements( C3D8) are applied for model silo wall and stored materials respectively. The interaction between silo wall and stored materials is simulated by Coulomb friction model and penalty contact constrain provided by ABAQUS.The numerical results are verified with the existing experimental data that are designed to ensure the validation of such numerical model using FEM and it obtains good agreements between numerical results and experimental data. Then the material parameters are analyzed in both static and dynamic condition.According to the analysis,it is clear that critical friction angle,initial void ratio and minimum void ratio have an obvious effect on static lateral pressure while all the material parameters affect dynamic lateral pressure at different levels. In addition,differences of silo wall between elastic and plastic state are analyzed in dynamic condition. The numerical results show that it contributes to increasing dynamic pressure when silo wall enters into the plastic state. Finally,this paper discusses the time-history lateral pressure at different heights along silo wall,and analytical results indicate that larger acceleration values play main roles in producing the maximum lateral pressure at higher part of the silo wall. 展开更多
关键词 RC cylinder silo static lateral pressure dynamic lateral pressure hypoplastic theory FEM
下载PDF
Analysis of Influence on Aerodynamic Noise of Wind Turbine Blades under Different Pitch Angles
3
作者 Ruirong He Houcai Liu +1 位作者 Huimin Kang Jiale Xi 《Open Journal of Applied Sciences》 2024年第5期1237-1250,共14页
Aiming at the influence of blade pitch Angle on aerodynamic noise of wind turbines, the sound field and flow field distribution at 0˚, 5˚, 10˚ and 15˚ are calculated by numerical simulation. Then, through the distribu... Aiming at the influence of blade pitch Angle on aerodynamic noise of wind turbines, the sound field and flow field distribution at 0˚, 5˚, 10˚ and 15˚ are calculated by numerical simulation. Then, through the distribution of pressure field and velocity field calculated by flow field, the influence of different pitch angles on wind turbine blade aerodynamic noise and the reasons for its influence are analyzed. The results show that when the pitch Angle increases within 0˚ - 10˚, the aerodynamic noise pressure level of the blade decreases. However, the sound pressure level of aerodynamic noise increases in the range of 10˚ - 15˚. The changes of static pressure gradient and pressure pulsation on the blade surface make the aerodynamic noise change, and the changes of the two are positively correlated. At the same time, the fluid velocity and fluid motion state on the blade surface are closely related to the aerodynamic noise of the blade. The greater the fluid velocity, the more complex the fluid motion state and the greater the turbulent kinetic energy of the wind turbine blade, and the aerodynamic noise of the wind turbine blade will also increase. 展开更多
关键词 Pitch Angle Aerodynamic Noise static pressure Gradient Fluid Motion Numerical Simulation
下载PDF
Recent advances in high-pressure science and technology 被引量:10
4
作者 Ho-Kwang Mao Bin Chen +4 位作者 Jiuhua Chen Kuo Li Jung-Fu Lin Wenge Yang Haiyan Zheng 《Matter and Radiation at Extremes》 SCIE EI CAS 2016年第1期59-75,共17页
Recently we are witnessing the boom of high-pressure science and technology from a small niche field to becoming a major dimension in physical sciences.One of the most important technological advances is the integrati... Recently we are witnessing the boom of high-pressure science and technology from a small niche field to becoming a major dimension in physical sciences.One of the most important technological advances is the integration of synchrotron nanotechnology with the minute samples at ultrahigh pressures.Applications of high pressure have greatly enhanced our understanding of the electronic,phonon,and doping effects on the newly emerged graphene and related 2D layered materials.High pressure has created exotic stoichiometry even in common Group 17,15,and 14 compounds and drastically altered the basic σ and π bonding of organic compounds.Differential pressure measurements enable us to study the rheology and flow of mantle minerals in solid state,thus quantitatively constraining the geodynamics.They also introduce a new approach to understand defect and plastic deformations of nano particles.These examples open new frontiers of high-pressure research. 展开更多
关键词 High pressure science and technology static high pressure Synchrotron X-ray probe Equation of state
下载PDF
Mechanical behavior analysis of high power commercial lithium-ion batteries
5
作者 Ruicheng Shen Shaojun Niu +2 位作者 Guobin Zhu Kai Wu Honghe Zheng 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第6期315-322,共8页
In application,lithium-ion cells undergo expansion during cycling.The mechanical behavior and the impact of external stress on lithium-ion battery are important in vehicle application.In this work,18 Ah high power com... In application,lithium-ion cells undergo expansion during cycling.The mechanical behavior and the impact of external stress on lithium-ion battery are important in vehicle application.In this work,18 Ah high power commercial cell with Li Ni_(0.5)Co_(0.2)Mn_(0.3)O_(2)/graphite electrode were adopted.A commercial compress machine was applied to monitor the mechanical characteristics under different stage of charge(SOC),lifetime and initial external force.The dynamic and steady force was obtained and the results show that the dynamic force increases as the SOC increasing,obviously.During the lifetime with high power driving mode,different external force is shown to have a great impact on the long-term cell performance,with higher stresses result in higher capacity decay rates and faster impedance increases.A proper initial external force(900 N)provides lower impedance increasing.Postmortem analysis of the cells with2000 N initial force suggests a close correlation between electrochemistry and mechanics in which higher initial force leads to higher direct current internal resistance(DCIR)increase rate.In addition,for the cell with higher external force,deformation of the cathode and thicker solid electrolyte interface(SEI)film on the surface of anode and separator are observed.Porosity reduction and closure was also verified after cycles which is an obstacle to the lithium ion transferring.The largest cause of the observed capacity decline was the loss of active lithium through autopsy analysis.In addition,for the cell with higher external force,deformation of the cathode and thicker SEI film on the surface of anode and separator are observed.Porosity reduction and closure was also verified after cycles which is an obstacle to the lithium ion transferring.The largest cause of the observed capacity decline was the loss of active lithium through autopsy analysis. 展开更多
关键词 Lithium-ion batteries External mechanical pressure Capacity fade static pressure Dynamic pressure
下载PDF
Confirmation of the First Law of Thermodynamics in Theory and Extended Bernoulli Equation
6
作者 Chengshu Jin 《Journal of Applied Mathematics and Physics》 2023年第2期409-420,共12页
The internal energy change of ideal gas does not depend on the volume and pressure. The internal energy change of real gas has not any relation with the volume and pressure, which had been proved. If the internal ener... The internal energy change of ideal gas does not depend on the volume and pressure. The internal energy change of real gas has not any relation with the volume and pressure, which had been proved. If the internal energy change had not any relation with the volume and pressure, we could confirm the first law of thermodynamics in theory. Simultaneously, the internal energy change is the state function that shall be able to be proved in theory. If the internal energy change depended on the volume and pressure, we could not prove that the internal energy change is the state function and the chemical thermodynamics theory is right. The extended or modified Bernoulli equation can be derived from the energy conservation law, and the internal energy change, heat, and friction are all considered in the derivation procedure. The extended Bernoulli equation could be applied to the flying aircraft and mechanical motion on the gravitational field, for instance, the rocket and airplane and so on. This paper also revises some wrong ideas, viewpoints, or concepts about the thermodynamics theory and Bernoulli equation. 展开更多
关键词 First Law of Thermodynamics Chemical Thermodynamics Bernoulli Equation static pressure Head FRICTION
下载PDF
带内部支撑结构的低压排汽缸气动性能分析
7
作者 钱小东 邰骁 +4 位作者 刘庆龙 边超 胡瑞 刘海涛 王晓放 《风机技术》 2023年第1期24-30,共7页
The static pressure recovery of low-pressure exhaust hood is important for the overall effectiveness of steam turbines.The tubular and plate stiffeners inside the exhaust contribute to the structural safety of exhaust... The static pressure recovery of low-pressure exhaust hood is important for the overall effectiveness of steam turbines.The tubular and plate stiffeners inside the exhaust contribute to the structural safety of exhaust,which affect the aerodynamic performance.Given the complicated exhaust model coupled with the last stage of turbine,this paper intends to investigate the aerodynamic performance of exhaust hood with individual stiffeners using highfidelity numerical simulations in order to figure out the corresponding effects.The results show that(1)the types of stiffeners have different effects on the aerodynamic performance;and(2)different installation positions and types of plate stiffeners have different effects on aerodynamic performance.The above investigations highlight the future demand regarding reasonable layout and quantity of stiffeners to improve the aerodynamic performance of exhaust as well as maintaining the structural safety. 展开更多
关键词 Exhaust Hood Complex Flow STIFFENERS static pressure Recovery
下载PDF
Study on Energy Conversion Characteristics in Volute of Pump as Turbine 被引量:6
8
作者 Senchun Miao Hongbiao Zhang +2 位作者 Fengxia Shi Xiaohui Wang Xijin Ma 《Fluid Dynamics & Materials Processing》 EI 2021年第1期201-214,共14页
A volute is a curved funnel with cross-sectional area increasing towards the discharge port.The volute of a centrifugal pump is the casing hosting the fluid being pumped by the impeller.In Pump-as-turbine devices(PAT)... A volute is a curved funnel with cross-sectional area increasing towards the discharge port.The volute of a centrifugal pump is the casing hosting the fluid being pumped by the impeller.In Pump-as-turbine devices(PAT),vice versa the volute plays the role of energy conversion element.In the present analysis,this process is analyzed using CFD.The results show that in the contraction section of volute the conversion between dynamic pressure energy and static pressure energy essentially depends on the reduction of flow area,while in the spiral section,frictional losses also play a significant role.From the throat to the end of the volute,the flow decreases in a wave-like manner. 展开更多
关键词 Pump as turbine VOLUTE energy conversion static pressure power dynamic pressure power
下载PDF
Numerical Simulation of Axial Inflow Characteristics and Aerodynamic Noise in a Large-Scale Adjustable-Blade Fan 被引量:4
9
作者 Lin Wang Chunguo An +4 位作者 Nini Wang Yaming Ping Kun Wang Ming Gao Suoying He 《Fluid Dynamics & Materials Processing》 EI 2020年第3期585-600,共16页
Numerical simulation are conducted to explore the characteristics of the axial inflow and related aerodynamic noise for a large-scale adjustable fan with the installation angle changing from−12°to 12°.In suc... Numerical simulation are conducted to explore the characteristics of the axial inflow and related aerodynamic noise for a large-scale adjustable fan with the installation angle changing from−12°to 12°.In such a range the maximum static(gauge)pressure at the inlet changes from−2280 Pa to 382 Pa,and the minimum static pressure decreases from−3389 Pa to−8000 Pa.As for the axial intermediate flow surface,one low pressure zone is located at the junction of the suction surface and the hub,another is located at the suction surface close to the casing position.At the outlet boundary,the low pressure is negative and decreases from−1716 Pa to−4589 Pa.The sound pressure level of the inlet and outlet noise tends to increase monotonously by 11.6 dB and 7.3 dB,respectively.The acoustic energy of discrete noise is always higher than that of broadband noise regardless of whether the inlet or outlet flow surfaces are considered.The acoustic energy ratio of discrete noise at the inlet tends to increase from 0.78 to 0.93,while at the outlet it first decreases from 0.79 to 0.73 and then increases to 0.84. 展开更多
关键词 Adjustable blade axial flow fan variable installation angle condition axial static pressure aerodynamic noise
下载PDF
Flow field control for 2-meter high-speed free-jet wind tunnel
10
作者 Jiayi TIAN Zhongwei LING +2 位作者 Weijie LIU Jianhua Qin Neng XIONG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2023年第10期77-89,共13页
The 2-meter High-speed Free-jet Wind Tunnel(2 m HFWT)is China’s first large-scale open-jet trisonic wind tunnel.Compared to traditional closed high-speed wind tunnels,this wind tunnel is endowed with remarkable advan... The 2-meter High-speed Free-jet Wind Tunnel(2 m HFWT)is China’s first large-scale open-jet trisonic wind tunnel.Compared to traditional closed high-speed wind tunnels,this wind tunnel is endowed with remarkable advantages of ample test chamber space,less interference from the tunnel wall,flexible model support mode,and adjustable continuous variation of the Mach number.Nevertheless,its unique structure makes traditional wind tunnel control methods difficult to apply and brings significant challenges to wind tunnel flow field control.In this paper,a flow field control system is designed for the 2 m HFWT by comprehensively using advanced control technologies such as neural network,gain scheduling,feedforward control,and adaptive control.Through practical application tests,it is proved that the proposed control system successfully solves the problem of high-precision flow field control under continual depletion of storage tank pressure,and realizes distinctive functions of adaptive static pressure matching and continuously varying Mach number at supersonic speed.In addition,due to the application of workflow technology,the flow field control system can flexibly adapt to the implementation of tests of different types and operation conditions,thus fully satisfying the needs of conducting various conventional and special tests in the 2 m HFWT. 展开更多
关键词 Continuously varying Mach number Wind tunnel Flow field control Neural network static pressure matching Feedforward control
原文传递
FORCES ON A NEAR-WALL CIRCULAR CYLINDER 被引量:2
11
作者 ZHANJing-xia WANGJin-jun ZHANGPang-feng 《Journal of Hydrodynamics》 SCIE EI CSCD 2004年第6期658-664,共7页
The pressure distribution around a near-wall smooth circular cylinder incross-flow was mainly investigated. The experiment was conducted at the sub-critical Reynolds numberranging from 2. 24 · 10~4 to 8. 94 ·... The pressure distribution around a near-wall smooth circular cylinder incross-flow was mainly investigated. The experiment was conducted at the sub-critical Reynolds numberranging from 2. 24 · 10~4 to 8. 94 · 10~4, at which the regular vortex separation exists on anisolated circular cylinder. The experimental results indicate that the forces on a circular cylindernear a plane wall are different from those on an isolated circular cylinder. Drag and liftcoefficients of a near-wall circular cylinder strongly depend on gap ratio. The increase of gapratio results in the increase of drag coefficient and the declination of lift coefficient, dragcoefficient ranges from 0. 5 to 1. 0, and lift coefficient from 0. 25 to 0 when gap ratio graduallyincreases from 0 to 1. 0, and then the forces tend to be nearly constant with the increase of gapratio. The attraction between a cylinder and a plane wall, i. e. , downward force, occurs when gapratio lies in certain range. The existence of cylinder changes the pressure gradient on the planewall, and the influence extends to the location where x/D 【 - 3.0 and x/D 】 5. 0 . 展开更多
关键词 gap ratio static pressure coefficient distribu-tiontlift coefficient dragcoefficient
原文传递
Numerical simulations of single and multi-staged injection of H_(2) in a supersonic scramjet combustor 被引量:1
12
作者 L.Abu-Farah O.J.Haidn H.-P.Kau 《Propulsion and Power Research》 SCIE 2014年第4期175-186,共12页
Computational fuid dynamics(CFD)simulations of a single staged injection of H_(2) through a central wedge shaped strut and a multi staged injection through wall injectors are carried out by using Ansys CFX-12 code.Uns... Computational fuid dynamics(CFD)simulations of a single staged injection of H_(2) through a central wedge shaped strut and a multi staged injection through wall injectors are carried out by using Ansys CFX-12 code.Unstructured terahedral grids for narow channel and quarter geometries of the combustor are generated by using ICEM CFD.Steady three dimensional(3D)Reynods averaged Navier-stokes(RANS)simulations are carried out in the case of no H_(2) injection and compared with the simulations of single staged pilot and/or main H2 injections and multistage injection.Shear stuess transport(SST)based on k-ω turbulent model is adopted.Flow field visualization(omplex shock waves interactions)and static pressure distribution along the wall of the combustor are pradicted and compared with the experimental schlieren images and measured wall static pressures for validation.A good agreement is found between the CFD predicted results and the measured data.The narow and quarter geometries of the combustor give similar results with very small differences.Multi-staged injections of H_(2) enhance the turbulent H_(2)/air mixing by fomming vortices and additional shock waves(bow shocks). 展开更多
关键词 Computational fluid dynamics(CFD)Reynolds-averaged Navier-stokes(RANS)simulation Supersonic combustor Shear stresstransport(SST)k-ω static pressures H_(2)/air mixing Single/multi-stage injection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部