This paper proposes a collaborative planning model for active distribution network(ADN)and electric vehicle(EV)charging stations that fully considers vehicle-to-grid(V2G)function and reactive power support of EVs in d...This paper proposes a collaborative planning model for active distribution network(ADN)and electric vehicle(EV)charging stations that fully considers vehicle-to-grid(V2G)function and reactive power support of EVs in different regions.This paper employs a sequential decomposition method based on physical characteristics of the problem,breaking down the holistic problem into two sub-problems for solution.Subproblem I optimizes the charging and discharging behavior of autopilot electric vehicles(AEVs)using a mixed-integer linear programming(MILP)model.Subproblem II uses a mixed-integer secondorder cone programming(MISOCP)model to plan ADN and retrofit or construct V2G charging stations(V2GCS),as well as multiple distributed generation resources(DGRs).The paper also analyzes the impact of bi-directional active-reactive power interaction of V2GCS on ADN planning.The presented model is tested in the 47-node ADN in Longgang District,Shenzhen,China,and the IEEE 33-node ADN,demonstrating that decomposition can significantly improve the speed of solving large-scale problems while maintaining accuracy with low AEV penetration.展开更多
At present,continuous observation data for atmospheric nitrous oxide(N_2O) concentrations are still lacking,especially in east Antarctica.In this paper,nitrous oxide background concentrations were measured at Zhongs...At present,continuous observation data for atmospheric nitrous oxide(N_2O) concentrations are still lacking,especially in east Antarctica.In this paper,nitrous oxide background concentrations were measured at Zhongshan Station(69°22′25″S,76°22′14″E),east Antarctica during the period of 2008–2012,and their interannual and seasonal characteristics were analyzed and discussed.The mean N_2O concentration was 321.9 n L/L with the range of 320.5–324.8 n L/L during the five years,and it has been increasing at a rate of 0.29% year-1.Atmospheric N_2O concentrations showed a strong seasonal fluctuation during these five years.The concentrations appeared to follow a downtrend from spring to autumn,and then increased in winter.Generally the highest concentrations occurred in spring.This trend was very similar to that observed at other global observation sites.The overall N_2O concentration at the selected global sites showed an increasing annual trend,and the mean N_2O concentration in the Northern Hemisphere was slightly higher than that in the Southern Hemisphere.Our result could be representative of atmospheric N_2O background levels at the global scale.This study provided valuable data for atmospheric N_2O concentrations in east Antarctica,which is important to study on the relationships between N2 O emissions and climate change.展开更多
基金supported in part by National Natural Science Foundation of China(No.52007123).
文摘This paper proposes a collaborative planning model for active distribution network(ADN)and electric vehicle(EV)charging stations that fully considers vehicle-to-grid(V2G)function and reactive power support of EVs in different regions.This paper employs a sequential decomposition method based on physical characteristics of the problem,breaking down the holistic problem into two sub-problems for solution.Subproblem I optimizes the charging and discharging behavior of autopilot electric vehicles(AEVs)using a mixed-integer linear programming(MILP)model.Subproblem II uses a mixed-integer secondorder cone programming(MISOCP)model to plan ADN and retrofit or construct V2G charging stations(V2GCS),as well as multiple distributed generation resources(DGRs).The paper also analyzes the impact of bi-directional active-reactive power interaction of V2GCS on ADN planning.The presented model is tested in the 47-node ADN in Longgang District,Shenzhen,China,and the IEEE 33-node ADN,demonstrating that decomposition can significantly improve the speed of solving large-scale problems while maintaining accuracy with low AEV penetration.
基金supported by the Second Tibetan Plateau Scientific Expedition and Research Program(2022QZKK0101)the National Natural Science Foundation of China(41988101,42001104,and 41975140)+1 种基金the National Key Scientific and Technological Infrastructure Project“Earth System Science Numerical Simulator Facility”(Earth Lab,201715003471104355)the Innovation Program for Young Scholars of TPESER(TPESER-QNCX2022ZD-01)。
基金supported by the Program of China Polar Environment Investigation and Assessment (No.CHINARE 2011–2015)the National Natural Science Foundation of China (Nos.41176171,41576181)
文摘At present,continuous observation data for atmospheric nitrous oxide(N_2O) concentrations are still lacking,especially in east Antarctica.In this paper,nitrous oxide background concentrations were measured at Zhongshan Station(69°22′25″S,76°22′14″E),east Antarctica during the period of 2008–2012,and their interannual and seasonal characteristics were analyzed and discussed.The mean N_2O concentration was 321.9 n L/L with the range of 320.5–324.8 n L/L during the five years,and it has been increasing at a rate of 0.29% year-1.Atmospheric N_2O concentrations showed a strong seasonal fluctuation during these five years.The concentrations appeared to follow a downtrend from spring to autumn,and then increased in winter.Generally the highest concentrations occurred in spring.This trend was very similar to that observed at other global observation sites.The overall N_2O concentration at the selected global sites showed an increasing annual trend,and the mean N_2O concentration in the Northern Hemisphere was slightly higher than that in the Southern Hemisphere.Our result could be representative of atmospheric N_2O background levels at the global scale.This study provided valuable data for atmospheric N_2O concentrations in east Antarctica,which is important to study on the relationships between N2 O emissions and climate change.