期刊文献+
共找到205篇文章
< 1 2 11 >
每页显示 20 50 100
Microstructure and mechanical properties of stationary shoulder friction stir welding joint of 2A14-T62 aluminum alloy
1
作者 邓建峰 王博 +3 位作者 王生希 郭伟强 黄智恒 费文潘 《China Welding》 CAS 2024年第2期31-38,共8页
2A14-T62 butt joint was successfully welded by stationary shoulder friction stir welding(SSFSW)method.The results showed that using a pin with small shoulder could broaden the process window,and under a rotation speed... 2A14-T62 butt joint was successfully welded by stationary shoulder friction stir welding(SSFSW)method.The results showed that using a pin with small shoulder could broaden the process window,and under a rotation speed of 2000 r/min and welding speed of 30 mm/min,joint with smooth surface,small reduction in thickness and little inner defects was obtained.The weld nugget zone was approx-imately circular,which was a unique morphology for SSFSW.The heat-affected zone(HAZ)and thermo-mechanically affected zone(TMAZ)were both quite narrow due to the lower heat input and slight mechanical action of the stationary shoulder.The fraction of high angle grain boundaries(HAGBs)exhibited a“W”shape along horizontal direction(from advancing side to retreating side),and the minim-um value located at HAZ.The average ultimate tensile strength and elongation of the joint were 325 MPa and 4.5%,respectively,with the joint efficiency of 68.3%.The joint was ductile fractured and the fracture surface contained two types of dimples morphology in different re-gions of the joint.Microhardness distribution in the joint exhibited a“W”shape,and the difference along the thickness direction was negli-gible.The joint had strong stress corrosion cracking susceptibility,and the slow stain rate tensile strength was 139 MPa.Microcrack and Al2O3 particulates were observed at the fracture surface. 展开更多
关键词 2A14-T62 aluminum alloy stationary shoulder friction stir welding microstructure mechanical property stress corrosion cracking
下载PDF
Strengthening strategy for high-performance friction stir lap welded joints based on 5083 Al alloy
2
作者 Yujia Shen Jijie Wang +5 位作者 Beibei Wang Peng Xue Fengchao Liu Dingrui Ni Bolv Xiao Zongyi Ma 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第11期2498-2507,共10页
During aircraft,ship,and automobile manufacturing,lap structures are frequently produced among Al alloy skins,wall panels,and stiffeners.The occurrence of welding defects severely decreases mechanical properties durin... During aircraft,ship,and automobile manufacturing,lap structures are frequently produced among Al alloy skins,wall panels,and stiffeners.The occurrence of welding defects severely decreases mechanical properties during friction stir lap welding(FSLW).This study focuses on investigating the effects of rotation rate,multipass welding,and cooling methods on lap defect formation,microstructural evolution,and mechanical properties.Hook defects were eliminated by decreasing welding speed,applying two-pass FLSW with a small welding tool,and introducing additional water cooling,thus leading to a remarkable increase in effective sheet thickness and lap width.This above strategy yielded defect-free joints with an ultrafine-grained microstructure and increased tensile shear force from 298 to 551 N/mm.The fracture behavior of FSLW joints was systematically studied,and a fracture factor of lap joints was proposed to predict their fracture mode.By reducing the rotation rate,using two-pass welding,and employing additional water cooling strategies,an enlarged,strengthened,and defect-free lap zone with refined ultrafine grains was achieved with a quality comparable to that of lap welds based on 7xxx Al alloys.Importantly,this study provides a valuable FSLW method for eliminating hook defects and improving joint performance. 展开更多
关键词 friction stir lap welding defect control microstructure fracture mechanisms mechanical properties
下载PDF
Experimental and numerical investigations of bonding interface behavior in stationary shoulder friction stir lap welding 被引量:4
3
作者 Q.Wen W.Y.Li +3 位作者 W.B.Wang F.F.Wang Y.J.Gao V.Patel 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第1期192-200,共9页
Stationary shoulder friction stir lap welding(SSFSLW) was employed to weld 2024 aluminum alloy. A coupled Eulerian-Lagrangian(CEL) model was developed to investigate the lap interface behavior during SSFSLW. Numerical... Stationary shoulder friction stir lap welding(SSFSLW) was employed to weld 2024 aluminum alloy. A coupled Eulerian-Lagrangian(CEL) model was developed to investigate the lap interface behavior during SSFSLW. Numerical results of material movement and equivalent plastic strain were in good agreement with the experimental work. With increasing welding speed, the distances from the hook tip to the top surface of the upper workpiece on the retreating side(RS) and the advancing side(AS) increase, while the distance between two wave-shaped alclads decreases. A symmetric interface bending is observed on the AS and the RS during plunging, while the interface bending on the AS is bigger than that on the RS during welding. The peak temperature of the interface on the AS is higher than that on the RS. The equivalent plastic strain gradually increases as the distance to the weld center decreases, and its peak value is obtained near the bottom of the weld. 展开更多
关键词 stationary shoulder friction stir lap welding Coupled Eulerian-Lagrangian Temperature field Material distribution EQUIVALENT plastic strain
原文传递
Effects of shoulder on interfacial bonding during friction stir lap welding of aluminum thin sheets using tool without pin 被引量:8
4
作者 张贵锋 苏伟 +2 位作者 张军 韦中新 张建勋 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2010年第12期2223-2228,共6页
To separately investigate the potential effects of shoulder on increasing interfacial bonded area and its mechanism,friction stir lap welding(FSLW)of 1.8 mm thick Al sheets without and with insert(copper foil or Al-12... To separately investigate the potential effects of shoulder on increasing interfacial bonded area and its mechanism,friction stir lap welding(FSLW)of 1.8 mm thick Al sheets without and with insert(copper foil or Al-12Si powders)was conducted using a special tool without pin,respectively.All the FSLW joints(without insert)fractured within top sheet but not along faying surface,suggesting that the shoulder plays an important role comparable or superior to pin in FSLW of thin sheets.Using several specially designed experimental techniques,the presence of forging and torsion actions of shoulder was demonstrated.The fracture surface of the joints with inserts indicates that interfacial wear occurs,which results in the oxide film disruption and vertically interfacial mixing over the area forged by shoulder with a larger diameter than a general pin,especially at the boundary region of weld.The boundary effect can be induced and enhanced by forging effect and torsion effect. 展开更多
关键词 friction stir lap welding forging action torsion action boundary effect interfacial wear oxide disruption
下载PDF
Effect of pin rotating speed on lap shear strength of stationary shoulder friction stir lap welded 6005A-T6 aluminum alloy
5
作者 Liu Zhenlei Cui Hutao +2 位作者 Ji Shude Xu Minqiang Li Zhengwei 《China Welding》 EI CAS 2016年第2期58-63,共6页
Stationary shoulder friction stir lap welding (SSFSLW) was successfully used to weld 6005A-T6 aluminum alloy in this paper. Effect of pin rotating speed on cross section morphologies and lap shear strength of the SS... Stationary shoulder friction stir lap welding (SSFSLW) was successfully used to weld 6005A-T6 aluminum alloy in this paper. Effect of pin rotating speed on cross section morphologies and lap shear strength of the SSFSLW joints were mainly discussed. Results show that joints without flash and shoulder marks can be obtained by the stationary shoulder. Cross section of the SSFSLW joint presents a basin-like morphology and little material loss. By increasing the rotating speed from 1 000 rpm to 1 600 rpm, both effective sheet thickness and lap width increase, while lap shear failure load firstly decreases and then increases. The maximum failure load of 14. 05 kN /s attained when 1 000 rpm is used. All SSFSLW joints present shear fracture mode. 展开更多
关键词 friction stir lap welding stationary shoulder rotating speed lap shear failure load
下载PDF
Interface characteristic of friction stir welding lap joints of Ti/Al dissimilar alloys 被引量:12
6
作者 陈玉华 倪泉 柯黎明 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第2期299-304,共6页
Lap joints of TC1 Ti alloy and LF6 A1 alloy dissimilar materials were fabricated by friction stir welding and corresponding interface characteristics were investigated. Using the selected welding parameters, excellent... Lap joints of TC1 Ti alloy and LF6 A1 alloy dissimilar materials were fabricated by friction stir welding and corresponding interface characteristics were investigated. Using the selected welding parameters, excellent surface appearance forms, but the interface macrograph for each lap joint cross-section is different. With the increase of welding speed or the decrease of tool rotation rate, the amount of Ti alloy particles stirred into the stir zone by the force of tool pin decreases continuously. Moreover, the failure loads of the lap joints also decrease with increasing welding speed and the largest value is achieved at welding speed of 60 mm/min and tool rotation rate of 1500 r/min, where the interracial zone can be divided into 3 kinds of layers. The microhardness of the lap joint shows an uneven distribution and the maximum hardness of HV 502 is found in the middle of the stir zone. 展开更多
关键词 interface characteristic Ti/A1 dissimilar alloys friction stir welding lap joint
下载PDF
Comprehensive study of microstructure and mechanical properties of friction stir welded 5182-O/HC260YD+Z lap joint
7
作者 邓建峰 郭伟强 +4 位作者 徐晓霞 王博 灰辉 窦思忠 黄望业 《China Welding》 CAS 2023年第1期46-52,共7页
The welding of aluminum(Al)and steel has attracted more and more interest due to the weight reduction trend in vehicle and aerospace manufacturing industries.5182-O/HC260YD+Z lap joint was produced by friction stir we... The welding of aluminum(Al)and steel has attracted more and more interest due to the weight reduction trend in vehicle and aerospace manufacturing industries.5182-O/HC260YD+Z lap joint was produced by friction stir welding(FSW),and the microstructure and mechanical property of the joint were systemically characterized.The microstructure in horizontal direction of the Al and steel near interface was similar to their corresponding conventional friction stir welded joint.The joint was divided into stir zone of Al(ST-Al),stir zone of interface(ST-I),thermal-mechanically affected zone of steel(TMAZ-Fe)and base material of steel(BM-Fe)according to their distinct microstructure vertically.Three kinds of intermetallic compounds(IMCs)of FeAl_(3),FeAl and Fe_(3)Al were formed at the interface.The horizontal micro hardness distribution exhibited a hat shape and“M”shape in Al and steel,respectively.The hardest region of the joint was located at the ST-I,with a hardness of 175 HV−210 HV.The joint was fractured along the hook structure,with an average shear strength of 73.9 MPa.Fractural morphology of Al and steel indicted a cleavage fracture mode. 展开更多
关键词 LIGHTWEIGHT aluminum/steel lap joint friction stir welding interfacial microstructure mechanical property
下载PDF
Influence of tool plunge depth and welding distance on friction stir lap welding of AA5454-O aluminum alloy plates with different thicknesses 被引量:2
8
作者 Jun-Won KWON Myoung-Soo KANG +7 位作者 Sung-Ook YOON Yong-Jai KWON Sung-Tae HONG Dae-Il KIM Kwang-Hak LEE Jong-Dock SEO Jin-Soo MOON Kyung-Sik HAN 《中国有色金属学会会刊:英文版》 CSCD 2012年第S3期624-628,共5页
AA5454-O aluminum alloy plates with thicknesses of 1.4 and 1.0 mm were friction-stir-lap-welded (FSLWed).The influences of the tool plunge depth and welding distance on surface appearance,macrostructure and mechanical... AA5454-O aluminum alloy plates with thicknesses of 1.4 and 1.0 mm were friction-stir-lap-welded (FSLWed).The influences of the tool plunge depth and welding distance on surface appearance,macrostructure and mechanical properties of the FSLWed plates were experimentally investigated.The tensile shear load of the FSLWed plates was compared with that of the adhesive-bonded plates.Defect-free FSLWed zones were successfully obtained in all the tool plunge depths and the welding distances.The FSLWed zones exhibited the relatively smooth surface morphologies.Under all the FSLWed conditions,the FSLWed zone exhibited higher average hardness than the base metal.In addition,the upper plate exhibited a higher average hardness than the lower plate,although there was no special tendency in spite of the change in the tool plunge depth and the welding distance.The maximum tensile shear load of the FSLWed plates was much higher than that of the adhesive-bonded aluminum alloy plate.Especially,under the FSLW condition of the plunge depth of 1.8 mm and the welding distance of 40 mm,the tensile shear load of the FSLWed plate reached a level about 41% greater than that of the adhesive-bonded aluminum alloy plate.In addition,the maximum tensile shear load of the FSLWed plate was increased with the increase of the welding distance. 展开更多
关键词 friction stir lap welding AA5450-O aluminum alloy TOOL plunge DEPTH welding DISTANCE mechanical properties
下载PDF
Effect of process parameters on interfacial microstructure and mechanical properties of Al/Cu friction stir lap welding joints 被引量:1
9
作者 Wang Chenji Liu Song +2 位作者 Zhu Hao Cao Zhilong Dong Shaokang 《China Welding》 CAS 2022年第4期48-58,共11页
In this study,friction stir lap welding(FSLW)was performed for the welding test of 6061 aluminium alloy and T2 pure copper.The effect of process parameters containing rotation rate and travel speed on interfacial micr... In this study,friction stir lap welding(FSLW)was performed for the welding test of 6061 aluminium alloy and T2 pure copper.The effect of process parameters containing rotation rate and travel speed on interfacial microstructure evolution and mechanical properties of Al/Cu dissimilar joints were explored.The experiments were carried out under the rotation rates of 600,900 and 1200 r/min and with the travel speeds of 30,70 and 100 mm/min.The characteristic of interface transition zones(ITZs)and the species of intermetallic compounds(IMCs)were investigated.The Al/Cu interface showed a layered structure composed of Al-Cu IMCs,which will affect the mechanical property.The layer consisting of Al2Cu was formed at lower heat input,and as heat input increased the Al4Cu9 phase started to form.Excessive heat input will increase the thickness of the interface and raise the brittleness of the joints.The thickness of the IMCs layers changed from0.89μm to 3.96μm as the heat input increased.The maximum value of tensile shear loading of 4.65 kN was obtained at the rotation rate of900 r/min and travel speed of 100 mm/min with the interface thickness of 2.89μm.The fracture mode of the joints was a mix of ductile and brittle fracture. 展开更多
关键词 friction stir lap welding Al/Cu dissimilar welding intermetallic compounds process parameters mechanical properties
下载PDF
Optimization of Welding Parameters for Friction Stir Lap Welding of AA6061-T6 Alloy
10
作者 Rathinasuriyan Chandran Sankar Ramaiyan +1 位作者 Avin Ganapathi Shanbhag Senthil Kumar Velukkudi Santhanam 《Modern Mechanical Engineering》 2018年第1期31-41,共11页
Friction Stir Welding (FSW) is currently used in many aircraft and aerospace sheet metal structures involving lap joints and there has been growing interest in recent years in utilizing this process for joining alumin... Friction Stir Welding (FSW) is currently used in many aircraft and aerospace sheet metal structures involving lap joints and there has been growing interest in recent years in utilizing this process for joining aluminum alloys. In this paper, Friction Stir Lap Welding (FSLW) of the 6061-T6 aluminum alloy was carried out to obtain the optimum welding condition for maximum shear strength where the rotational speed, axial load, and welding speed were taken as process parameters. An L-9 orthogonal array, a Taguchi Method with consideration of three levels and three factors was designed and executed for conducting trials. Analysis of variance (ANOVA) and Signal to Noise (S/N) ratio were employed to investigate the influence of different welding parameters on the shear strength and obtain the optimum parameters. The Fisher-Test was also implemented to find the design parameter which had the most important effect on the characteristic of quality. The results indicated that the tool rotational speed had the maximum percentage contribution (51%) on the response (shear strength) followed by the welding speed (38%) and the axial load (8%) while the percentage of error was 3%. However, to confirm the main effects for the means and S/N ratios of the experiment, theoretical shear strength values were computed to predict the tensile strength. The maximum shear strength of 60 MPa was achieved and the effectiveness of the method was confirmed. The optimum parameter combinations that provided higher shear strength were: rotational speed of 1200 rpm, welding speed of 45 mm/min and the axial load of 11.5 kN. 展开更多
关键词 friction stir welding lap Joint AA6061 ALLOY and OPTIMIZATION
下载PDF
Influence of tool pin profile on the interface migration of friction stir lap joints* 被引量:7
11
作者 邢丽 邹贵生 +1 位作者 柯黎明 魏鹏 《China Welding》 EI CAS 2011年第4期6-11,共6页
Friction stir lap joints of LY12 aluminum alloy plates with a thickness of 3 mm were fabricated using several tools with different pin profiles. The effects of tool pin profile on the interface migration of friction s... Friction stir lap joints of LY12 aluminum alloy plates with a thickness of 3 mm were fabricated using several tools with different pin profiles. The effects of tool pin profile on the interface migration of friction stir lap joints were investigated with the comparison of weld morphologies. The results show that the screw thread of the pin plays an important role in the migration of weld interface in the thickness direction. The interface between the sheets will move upwards to the top of the plate when the pin with left hand thread was used. Conversely, the interface will move downwards to the tip of the pin when the pin with right hand thread was used: As for a stir pin with smooth surface was used, the upward or downward migration of the weld interface was largely reduced, but the extension of weld interface to the weld center line from the retreating side becomes more serious. By analyzing the force on the pin according to the sucking-extruding theory for the weld formation, the obtained results have been well explained. 展开更多
关键词 friction stir welding lap joint pin profile interface migration
下载PDF
Corrosion evaluation of friction stir welded lap joints of AA6061-T6 aluminum alloy 被引量:5
12
作者 Farhad GHARAVI Khamirul A.MATORI +2 位作者 Robiah YUNUS Norinsan K.OTHMAN Firouz FADAEIFARD 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第3期684-696,共13页
Corrosion behavior of friction stir lap welded AA6061-T6 aluminum alloy was investigated by immersion tests in sodium chloride + hydrogen peroxide solution. Electrochemical measurement by cyclic potentiodynamic polari... Corrosion behavior of friction stir lap welded AA6061-T6 aluminum alloy was investigated by immersion tests in sodium chloride + hydrogen peroxide solution. Electrochemical measurement by cyclic potentiodynamic polarization, scanning electron microscopy, and energy dispersive spectroscopy were employed to characterize corrosion morphology and to realize corrosion mechanism of weld regions as opposed to the parent alloy. The microstructure and shear strength of welded joint were fully investigated. The results indicate that, compared with the parent alloy, the weld regions are susceptible to intergranular and pitting attacks in the test solution during immersion time. The obtained results of lap shear testing disclose that tensile shear strength of the welds is 128 MPa which is more than 60% of the strength of parent alloy in lap shear testing. Electrochemical results show that the protection potentials of the WNZ and HAZ regions are more negative than the pitting potential. This means that the WNZ and HAZ regions do not show more tendencies to pitting corrosion. Corrosion resistance of parent alloy is higher than that for the weldments, and the lowest corrosion resistance is related to the heat affected zone. The pitting attacks originate from the edge of intermetallic particles as the cathode compared with the Al matrix due to their high self-corrosion potential. It is supposed that by increasing intermetallic particle distributed throughout the matrix of weld regions, the galvanic corrosion couples are increased, and hence decrease the corrosion resistance of weld regions. 展开更多
关键词 friction stir welding lap joints AA6061 alloy pitting corrosion welding process intermetallic particles
下载PDF
Influence of rotational speed on mechanical properties of friction stir lap welded 6061-T6 Al alloy 被引量:6
13
作者 Firouz FADAEIFARD Khamirul Amin MATORI +6 位作者 Meysam TOOZANDEHJANI Abdul Razak DAUD Mohd Khairol Anuar Mohd ARIFFIN Norinsan Kamil OTHMAN Farhad GHARAVI Abdul Hadi RAMZANI Farhad OSTOVAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第4期1004-1011,共8页
The effect of rotational speed on macro and microstructures, hardness, lap shear performance and failure mode of friction stir lap welding on AA6061-T6 Al alloy with 5 mm in thickness was studied by field-emission sca... The effect of rotational speed on macro and microstructures, hardness, lap shear performance and failure mode of friction stir lap welding on AA6061-T6 Al alloy with 5 mm in thickness was studied by field-emission scanning electron microscopy (FE-SEM). The results represent much closer hardness distribution in the upper and lower plates at the lowest rotational speed. It indicates the Fe-compounds in the fracture surface of the nugget zone by EDX. 展开更多
关键词 aluminum alloy friction stir lap welding mechanical properties
下载PDF
Effects of process parameters on microstructure and mechanical properties of friction stir lap linear welded 6061 aluminum alloy to NZ30K magnesium alloy 被引量:5
14
作者 Shuai Tan Feiyan Zheng +3 位作者 Juan Chen Jingyu Han Yujuan Wu Liming Peng 《Journal of Magnesium and Alloys》 SCIE EI CAS 2017年第1期56-63,共8页
The microstructures and lap-shear behaviors of friction stir lap linear welded as-extruded 6061 Al alloy to as-cast Mg–3.0Nd–0.2Zn–0.7Zr(wt.%)(NZ30K)alloy joints were examined.Various tool rotation and travel speed... The microstructures and lap-shear behaviors of friction stir lap linear welded as-extruded 6061 Al alloy to as-cast Mg–3.0Nd–0.2Zn–0.7Zr(wt.%)(NZ30K)alloy joints were examined.Various tool rotation and travel speeds were adopted to prepare the joints.The analysis of temperature field indicates that the peak temperature for each sample can reach 450℃,which exceeds the eutectic reaction temperatures of 437℃ and 450℃ according to the binary phase diagram of Al–Mg system.The fierce intermixing can be found at the interface between Al and Mg alloys,forming the intermetallic of Al_(3)Mg_(2).Welds with the rotation speed of 900 rpm and travel speed of 120 mm/min display the highest tensile shear failure load of about 2.24 kN.The value was increased by 13%after the sample was heat treated at 400℃ for 0.5 h. 展开更多
关键词 friction stir lap linear welding(FSLW) Temperature field Tensile shear test Heat treatment
下载PDF
Effect of tool tilt angle on strength and microstructural characteristics of friction stir welded lap joints of AA2014-T6 aluminum alloy 被引量:3
15
作者 C.RAJENDRAN K.SRINIVASAN +2 位作者 V.BALASUBRAMANIAN H.BALAJI P.SELVARAJ 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2019年第9期1824-1835,共12页
Friction stir welding(FSW)has been extensively adopted to fabricate aluminium alloy joints by incorporating various welding parameters that include welding speed,rotational speed,diameters of shoulder and pin and tool... Friction stir welding(FSW)has been extensively adopted to fabricate aluminium alloy joints by incorporating various welding parameters that include welding speed,rotational speed,diameters of shoulder and pin and tool tilt angle.FSW parameters significantly affect the weld strength.Tool tilt angle is one of the significant process parameters among the weld parameters.The present study focused on the effect of tool tilt angle on strength of friction stir lap welding of AA2014-T6 aluminium alloy.The tool tilt angle was varied between 0°and 4°with an equal increment of 1°.Other process parameters were kept constant.Macrostructure and microstructure analysis,microhardness measurement,scanning electron micrograph,transmission electron micrograph and energy dispersive spectroscopy analysis were performed to evaluate the lap shear strength of friction stir lap welded joint.Results proved that,defect-free weld joint was obtained while using a tool tilt angle of 1°to 3°.However,sound joints were welded using a tool tilt angle of 2°,which had the maximum lap shear strength of 14.42 kN and microhardness of HV 132.The joints welded using tool tilt angles of 1°and 3°yielded inferior lap shear strength due to unbalanced material flow in the weld region during FSW. 展开更多
关键词 AA2014 aluminium alloy friction stir lap welding tool tilt angle lap shear strength microstructure
下载PDF
A novel seal-flow multi-vortex friction stir lap welding of metal to polymer matrix composites
16
作者 Shuaiqiang NIAN Mingshen LI +3 位作者 Shude JI Wei HU Zhiqing ZHANG Zelin SUN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第1期451-462,共12页
The friction stir lap welding(FSLW)of metal to polymer is a challenging work due to the unavoidable polymer overflowing.Facing this problem,a novel seal-flow multi-vortex friction stir lap welding(SM-FSLW)technology b... The friction stir lap welding(FSLW)of metal to polymer is a challenging work due to the unavoidable polymer overflowing.Facing this problem,a novel seal-flow multi-vortex friction stir lap welding(SM-FSLW)technology based on the subversively-designed multi-step pin was put forward.Choosing 7075 aluminum alloy and short glass fiber-reinforced polyether ether ketone(PEEK)as research subjects,the welding temperature,material flow,formation and tensile shear strength of dissimilar materials lap joint under the SM-FSLW were studied and compared with those under traditional FSLW based on the conical pin.The multi-step pin rather than the conical pin effectively hindered the polymer overflowing due to the formation of vortexes by the step,thereby attaining a joint with a smooth surface.Compared with traditional FSLW,the SMFSLW obtained the higher welding temperature,the more violent material flow and the larger area with high flow velocity,thereby producing the macro-mechanical and micro-mechanical interlockings and then heightening the joint loading capacity.The tensile shear strength of lap joint under SM-FSLW was 27.8% higher than that under traditional FSLW.The SM-FSLW technology using the multi-step pin provides an effective way on obtaining a heterogeneous lap joint of metal to polymer with the excellent formation and high strength. 展开更多
关键词 friction stir lap welding Metal to polymer Multi-step pin Material flow Tensile shear strength
原文传递
Cu和Ni中间层对铝/钢异种金属搅拌摩擦搭接焊接头界面微观组织及剪切性能的影响
17
作者 王元一 乔柯 +4 位作者 张婷 郝政扬 王佳 王文 王快社 《塑性工程学报》 CAS CSCD 北大核心 2024年第3期214-221,共8页
采用搅拌摩擦搭接焊(FSLW)对添加Cu和Ni中间层的6061-T6铝合金和QP1180钢进行焊接,研究接头微观组织及力学性能。结果表明, FSLW可以成功制备出成形性良好的Al-Cu-Fe及Al-Ni-Fe接头, Cu粉和Ni粉均与基体结合良好。Cu粉阻隔了Al-Fe之间... 采用搅拌摩擦搭接焊(FSLW)对添加Cu和Ni中间层的6061-T6铝合金和QP1180钢进行焊接,研究接头微观组织及力学性能。结果表明, FSLW可以成功制备出成形性良好的Al-Cu-Fe及Al-Ni-Fe接头, Cu粉和Ni粉均与基体结合良好。Cu粉阻隔了Al-Fe之间的元素扩散,接头金属间化合物(IMCs)种类为Al Cu和Al_(3)Cu_(2),无Al-Fe IMCs生成;Ni粉无法完全阻隔Al-Fe之间的反应, IMCs种类为Al_(3)Ni_(2)和Al Fe_(3)。Al-Ni-Fe接头中产生的IMCs与基体之间的平均错配度低于Al-Cu-Fe接头中IMCs与基之间的平均错配度,表明Al-Ni-Fe接头中产生的IMCs与基体之间的结合强度优于Al-Cu-Fe接头中产生的IMCs与基体之间的结合强度,因此Al-Ni-Fe接头剪切强度(7.86 k N)优于Al-Cu-Fe接头剪切强度(4.62 k N)。 展开更多
关键词 搅拌摩擦搭接焊 铝/钢界面 金属间化合物 错配度 剪切性能
下载PDF
AZ31B镁合金连续铸轧板材搅拌摩擦搭焊接头组织研究
18
作者 董芬 李铁龙 +1 位作者 许宝卉 王付杰 《热加工工艺》 北大核心 2024年第12期145-149,154,共6页
对AZ31B镁合金连续铸轧板材进行搅拌头逆时针与顺时针相结合的二道搅拌摩擦搭接焊。经对其搭接接头横截面的焊缝宏观及不同部位微观组织对比来分析二道搅拌摩擦焊对焊接接头塑性组织及成形的影响。结果表明:焊核区等轴晶粒组织特别细小... 对AZ31B镁合金连续铸轧板材进行搅拌头逆时针与顺时针相结合的二道搅拌摩擦搭接焊。经对其搭接接头横截面的焊缝宏观及不同部位微观组织对比来分析二道搅拌摩擦焊对焊接接头塑性组织及成形的影响。结果表明:焊核区等轴晶粒组织特别细小、均匀;过渡区晶粒组织大小起伏较大,略大于焊核,较小于母材组织;前进侧界面迁移呈现大弧度卷起,比较突兀与焊核隔断,形成钩状缺陷,而后退侧界面迁移线缓缓渗入中部焊核区,渐渐消失于焊核组织内;前进侧迁移线的成形特点相比于孔洞隧道缺陷,成为整个焊接接头最薄弱部分;前进侧界面迁移线边的组织融合影响了对焊接头的成形;二道搅拌摩擦搭接两次搅拌头旋转方向同为逆时针时,能得到表面良好、组织熔合紧密、强度较高接头;当搭接接头上板为后退侧时,与上板为前进侧相比,搭接接头能够承受更大剪切力。 展开更多
关键词 AZ31B镁合金连铸板材 搅拌摩擦搭接焊 界面迁移
下载PDF
铝/钢铆接辅助搅拌摩擦焊搭接接头组织与力学性能分析
19
作者 翟畅 王俭辛 +3 位作者 田雄文 陈书锦 金一鸣 李沫琦 《精密成形工程》 北大核心 2024年第8期68-76,共9页
目的利用搅拌摩擦焊技术对4mm以上厚度的铝/钢板材进行搭接焊接时,容易出现沿厚度方向温度梯度变化大、工艺窗口急剧变窄等问题,难以获得高质量的焊接接头。针对以上问题,采用铆接辅助搅拌摩擦焊的方法,以提高4mm以上厚度铝/钢板材搭接... 目的利用搅拌摩擦焊技术对4mm以上厚度的铝/钢板材进行搭接焊接时,容易出现沿厚度方向温度梯度变化大、工艺窗口急剧变窄等问题,难以获得高质量的焊接接头。针对以上问题,采用铆接辅助搅拌摩擦焊的方法,以提高4mm以上厚度铝/钢板材搭接接头的力学性能。方法采用铆接辅助搅拌摩擦焊的方法实现了7mm厚6061铝合金板和8mm厚Q345钢板的搭接;研究了下压量对接头焊核晶粒尺寸、抗剪切力和显微硬度的影响,并分析了接头界面显微组织。结果随着下压量的增大,各接头焊核晶粒尺寸均呈现先减小后增大的趋势,其中矩形槽焊核晶粒尺寸由11.1μm减小至9.6μm后又增大至12.7μm,不开槽焊核晶粒尺寸由11.7μm减小至10.2μm后又增大至12.4μm。金属间化合物(IMC)层厚度随下压量的增大而增大,接头抗剪切力呈先增大后减小的趋势,当下压量为0.3mm时,矩形槽接头和不开槽接头抗剪切力均达到最大值,分别为17600N和15700N,并且在下压量为0.3mm时矩形槽接头和不开槽接头焊核区平均显微硬度均达到最大值,分别为81.1HV和76.8HV。结论在焊接速度为100mm/min、搅拌头转速为600r/min、轴肩下压量为0.3 mm时,利用铆接辅助搅拌摩擦焊可以提高搭接接头的力学性能,能够有效解决以往4mm以上厚度板材搭接接头力学性能较差的难题。 展开更多
关键词 铝/钢搭接 铆接辅助搅拌摩擦焊 下压量 显微组织 力学性能
下载PDF
旋转速度对静止轴肩搅拌摩擦焊温度场和应力场的影响
20
作者 贺巍亮 王伟 +1 位作者 李华芳 李晓燕 《电焊机》 2024年第1期86-94,共9页
针对3 mm厚的2024-T4铝合金,采用ABAQUS软件建立静止轴肩搅拌摩擦焊热源三维模型,分析2024-T4铝合金静止轴肩搅拌摩擦焊温度场和应力场的有限元模拟,研究了恒定150 mm/min焊接速度下,旋转速度从800 mm/min到1 200 mm/min对焊接接头残余... 针对3 mm厚的2024-T4铝合金,采用ABAQUS软件建立静止轴肩搅拌摩擦焊热源三维模型,分析2024-T4铝合金静止轴肩搅拌摩擦焊温度场和应力场的有限元模拟,研究了恒定150 mm/min焊接速度下,旋转速度从800 mm/min到1 200 mm/min对焊接接头残余应力的影响。结果表明:常规搅拌摩擦焊焊缝横截面高温区域呈现碗状分布,而静止轴肩搅拌摩擦焊呈类似于搅拌针形貌分布。相比于常规搅拌摩擦焊,静止轴肩可以获得更窄的搅拌区宽度,并且有效降低焊缝中心的峰值温度。焊后垂直于焊缝区域的纵向残余应力呈现“M”形分布,随着搅拌头旋转速度的增大,两种工艺下的焊后残余应力均增大。此外,静止轴肩在焊接过程中对焊缝区域持续碾压,使得焊后试样的纵向残余应力峰值相比较于传统搅拌摩擦焊能降低45.6%。 展开更多
关键词 2024-T4铝合金 静止轴肩搅拌摩擦焊 旋转速度 残余应力
下载PDF
上一页 1 2 11 下一页 到第
使用帮助 返回顶部