It is stipulated in the China national document, named'The Economical Appraisal Methods for Construction Projects' that dynamic analysis should dominate the project economical appraisal methods. This paper has...It is stipulated in the China national document, named'The Economical Appraisal Methods for Construction Projects' that dynamic analysis should dominate the project economical appraisal methods. This paper has set up a dynamic investment forecast model for Yuanbaoshan Surface Coal Mine. Based on this model, the investment reliability using simulation and analytic methods has been analysed, and the probability that the designed internal rate of return can reach 8.4%, from economic points of view, have been also studied.展开更多
To make the dynamic assembly reliability analysis more effective for complex machinery of multi-object multi-discipline(MOMD),distributed collaborative extremum response surface method(DCERSM)was proposed based on ext...To make the dynamic assembly reliability analysis more effective for complex machinery of multi-object multi-discipline(MOMD),distributed collaborative extremum response surface method(DCERSM)was proposed based on extremum response surface method(ERSM).Firstly,the basic theories of the ERSM and DCERSM were investigated,and the strengths of DCERSM were proved theoretically.Secondly,the mathematical model of the DCERSM was established based upon extremum response surface function(ERSF).Finally,this model was applied to the reliability analysis of blade-tip radial running clearance(BTRRC)of an aeroengine high pressure turbine(HPT)to verify its advantages.The results show that the DCERSM can not only reshape the possibility of the reliability analysis for the complex turbo machinery,but also greatly improve the computational speed,save the computational time and improve the computational efficiency while keeping the accuracy.Thus,the DCERSM is verified to be feasible and effective in the dynamic assembly reliability(DAR)analysis of complex machinery.Moreover,this method offers an useful insight for designing and optimizing the dynamic reliability of complex machinery.展开更多
A general response surface(RS) method is presented for reliability analysis of complex structure/mechanism with fuzzy-random uncertainty both in basic variables and in failure state variables. On the basis of equiva...A general response surface(RS) method is presented for reliability analysis of complex structure/mechanism with fuzzy-random uncertainty both in basic variables and in failure state variables. On the basis of equivalent transformation from fuzzy basic variable to random basic variable, the fuzziness and randomness in the basic variables are considered simultaneously in the presented general RS method. Once the fuzzy basic variables are transformed into the random basic variables, the conventional RS method is employed to establish the general RS for the complex structure/mechanism with implicit limit state equation by finite element numerical simulation. Furthermore, the general failure probability is defined according to the probability formula for fuzzy-random event by taking the fuzziness and randomness in the failure-safety state into consideration, and an appropriate fuzzy operator is adopted to calculate the general failure probability for the complex structure/mechanism with multiple implicit failure modes. Finally, a general reliability analysis of an elastic linkage mechanism is introduced to illustrate the present method.展开更多
To ameliorate reliability analysis efficiency for aeroengine components, such as compressor blade, support vector machine response surface method(SRSM) is proposed. SRSM integrates the advantages of support vector mac...To ameliorate reliability analysis efficiency for aeroengine components, such as compressor blade, support vector machine response surface method(SRSM) is proposed. SRSM integrates the advantages of support vector machine(SVM) and traditional response surface method(RSM), and utilizes experimental samples to construct a suitable response surface function(RSF) to replace the complicated and abstract finite element model. Moreover, the randomness of material parameters, structural dimension and operating condition are considered during extracting data so that the response surface function is more agreeable to the practical model. The results indicate that based on the same experimental data, SRSM has come closer than RSM reliability to approximating Monte Carlo method(MCM); while SRSM(17.296 s) needs far less running time than MCM(10958 s) and RSM(9840 s). Therefore,under the same simulation conditions, SRSM has the largest analysis efficiency, and can be considered a feasible and valid method to analyze structural reliability.展开更多
Based on statistics principle,random error and systematic error were considered and the volumetric properties of the two mixtures types,namely A and B,were statistically analyzed using different distribution methods.S...Based on statistics principle,random error and systematic error were considered and the volumetric properties of the two mixtures types,namely A and B,were statistically analyzed using different distribution methods.Seventy-two samples of mixture A and fifty-two of mixture B were fabricated using the Marshall method.The probability distributions were compared on the basis of goodness of fit.Weibull model was found to be most appropriate model for describing the asphalt mixtures volumetric properties distribution.The two-parameter Weibull distribution function applied well to model the bulk specific gravity and voids filled with asphalt data,whereas,the three-parameter Weibull distribution appeared to be more appropriate in the discussing of air voids and voids in mineral aggregate.The experimetal results is revealed that compared with the mean value,the peak value of Weibull distribution was suggested as an alternative and more powerful parameter for describing the test data distribution characteristic.The analysis of test results also revealed that there were significant differences in the volumetric properties of the two tested mixtures for the same confidence level.The confidence interval decreased with the decreasing in reliability.展开更多
Security is a vital parameter to conserve energy in wireless sensor networks(WSN).Trust management in the WSN is a crucial process as trust is utilized when collaboration is important for accomplishing trustworthy dat...Security is a vital parameter to conserve energy in wireless sensor networks(WSN).Trust management in the WSN is a crucial process as trust is utilized when collaboration is important for accomplishing trustworthy data transmission.But the available routing techniques do not involve security in the design of routing techniques.This study develops a novel statistical analysis with dingo optimizer enabled reliable routing scheme(SADO-RRS)for WSN.The proposed SADO-RRS technique aims to detect the existence of attacks and optimal routes in WSN.In addition,the presented SADORRS technique derives a new statistics based linear discriminant analysis(LDA)for attack detection,Moreover,a trust based dingo optimizer(TBDO)algorithm is applied for optimal route selection in the WSN and accomplishes secure data transmission in WSN.Besides,the TBDO algorithm involves the derivation of the fitness function involving different input variables of WSN.For demonstrating the enhanced outcomes of the SADO-RRS technique,a wide range of simulations was carried out and the outcomes demonstrated the enhanced outcomes of the SADO-RRS technique.展开更多
This paper presents the data on operation reliability indices and relevant analyses toward China's conventional power generating units in 2009.The units brought into the statistical analysis include 100-MW or abov...This paper presents the data on operation reliability indices and relevant analyses toward China's conventional power generating units in 2009.The units brought into the statistical analysis include 100-MW or above thermal generating units,40-MW or above hydro generating units,and all nuclear generating units.The reliability indices embodied include utilization hours,times and hours of scheduled outages,times and hours of unscheduled outages,equivalent forced outage rate and equivalent availability factor.展开更多
Because of the randomness of many impact factors influencing the dynamic assembly relationship of complex machinery, the reliability analysis of dynamic assembly relationship needs to be accomplished considering the r...Because of the randomness of many impact factors influencing the dynamic assembly relationship of complex machinery, the reliability analysis of dynamic assembly relationship needs to be accomplished considering the randomness from a probabilistic perspective. To improve the accuracy and efficiency of dynamic assembly relationship reliability analysis, the mechanical dynamic assembly reliability(MDAR) theory and a distributed collaborative response surface method(DCRSM) are proposed. The mathematic model of DCRSM is established based on the quadratic response surface function, and verified by the assembly relationship reliability analysis of aeroengine high pressure turbine(HPT) blade-tip radial running clearance(BTRRC). Through the comparison of the DCRSM, traditional response surface method(RSM) and Monte Carlo Method(MCM), the results show that the DCRSM is not able to accomplish the computational task which is impossible for the other methods when the number of simulation is more than 100 000 times, but also the computational precision for the DCRSM is basically consistent with the MCM and improved by 0.40-4.63% to the RSM, furthermore, the computational efficiency of DCRSM is up to about 188 times of the MCM and 55 times of the RSM under 10000 times simulations. The DCRSM is demonstrated to be a feasible and effective approach for markedly improving the computational efficiency and accuracy of MDAR analysis. Thus, the proposed research provides the promising theory and method for the MDAR design and optimization, and opens a novel research direction of probabilistic analysis for developing the high-performance and high-reliability of aeroengine.展开更多
In order to provide important parameters for schedule designing, decision-making bases for transit operation management and references for passengers traveling by bus, bus transit travel time reliability is analyzed a...In order to provide important parameters for schedule designing, decision-making bases for transit operation management and references for passengers traveling by bus, bus transit travel time reliability is analyzed and evaluated based on automatic vehicle location (AVL) data. Based on the statistical analysis of the bus transit travel time, six indices including the coefficient of variance, the width of travel time distribution, the mean commercial speed, the congestion frequency, the planning time index and the buffer time index are proposed. Moreover, a framework for evaluating bus transit travel time reliability is constructed. Finally, a case study on a certain bus route in Suzhou is conducted. Results show that the proposed evaluation index system is simple and intuitive, and it can effectively reflect the efficiency and stability of bus operations. And a distinguishing feature of bus transit travel time reliability is the temporal pattern. It varies across different time periods.展开更多
Electromagnetic relay in aerospace is one of the main electronic components in aerospace electronic systems for information transfer, control and power distribution, and its reliability will influence the reliability ...Electromagnetic relay in aerospace is one of the main electronic components in aerospace electronic systems for information transfer, control and power distribution, and its reliability will influence the reliability of the whole aerospace electronic systems. Reliability design is the key technique of electromagnetic relay reliability engineering. This paper synthetically analyzes the present reliability design methods, and presents the reliability tolerance analyzing mathematic models of electromagnetic force basing on orthogonal design, mechanical spring force basing on probability statistics theory, and matching characteristics of electromagnetic force and mechanical spring force basing on method of stressstrength interference. Some instructive conclusions are draw by researching on the reliability tolerance of some type electromagnetic relay in aerospace.展开更多
An efficient resampling reliability approach was developed to consider the effect of statistical uncertainties in input properties arising due to insufficient data when estimating the reliability of rock slopes and tu...An efficient resampling reliability approach was developed to consider the effect of statistical uncertainties in input properties arising due to insufficient data when estimating the reliability of rock slopes and tunnels.This approach considers the effect of uncertainties in both distribution parameters(mean and standard deviation)and types of input properties.Further,the approach was generalized to make it capable of analyzing complex problems with explicit/implicit performance functions(PFs),single/multiple PFs,and correlated/non-correlated input properties.It couples resampling statistical tool,i.e.jackknife,with advanced reliability tools like Latin hypercube sampling(LHS),Sobol’s global sensitivity,moving least square-response surface method(MLS-RSM),and Nataf’s transformation.The developed approach was demonstrated for four cases encompassing different types.Results were compared with a recently developed bootstrap-based resampling reliability approach.The results show that the approach is accurate and significantly efficient compared with the bootstrap-based approach.The proposed approach reflects the effect of statistical uncertainties of input properties by estimating distributions/confidence intervals of reliability index/probability of failure(s)instead of their fixed-point estimates.Further,sufficiently accurate results were obtained by considering uncertainties in distribution parameters only and ignoring those in distribution types.展开更多
Reliability analysis plays an important role in the risk management of geotechnical engineering.For the random field-based method,it is expected that the uncertainty characterization of geo-material parameters and the...Reliability analysis plays an important role in the risk management of geotechnical engineering.For the random field-based method,it is expected that the uncertainty characterization of geo-material parameters and the realization of random field can be integrated effectively.Moreover,as the increase in measured data size is generally difficult in the field investigation of geotechnical engineering due to limitation of budget and time etc.,the statistical uncertainty resulting from sparse data should be paid great attention.Therefore,taking the determination of hyper-parameters for Bayesian-based conditional random field as the breakthrough,this study proposed a reliability analysis framework to achieve the expectation above.In this proposed reliability analysis framework,the present characterization method of statistical uncertainty is improved by setting the lognormal distribution as the prior distribution of scale of fluctuation(SOF).Subsequently,the performance of statistical uncertainty characterization method is tested by a set of unconfined compressive strength(UCS)database about rocks.Then,a case study about the stability analysis of slope is employed to demonstrate the beneficial effect of the proposed reliability analysis framework.It is found that the uncertainty in both the realization of random field and the reliability analysis results can be significantly mitigated by the proposed reliability analysis framework.展开更多
For the gradual maturity of Bayesian survival analysis theory,as well as the defects of the traditional methods for storage reliability evaluation,the Bayesian survival analysis method is proposed to build regression ...For the gradual maturity of Bayesian survival analysis theory,as well as the defects of the traditional methods for storage reliability evaluation,the Bayesian survival analysis method is proposed to build regression models for reliability in the random truncated test.These models can reflect the influences of different environments on the ammunition storage lifetime.As an example,the common exponential distribution is used here,and Markov chain Monte Carlo(MCMC)method based on Gibbs sampling dynamically simulates the Markov chain of the parameters' posterior distribution.Also,the parameters' Bayesian estimations are calculated in the random truncated condition.The simulation results show that the proposed method is effective and directly perceived.展开更多
Slope reliability analysis considering inherent spatial variability(ISV)of soil properties is timeconsuming when response surface method(RSM)is used,because of the"curse of dimensionality".This paper propose...Slope reliability analysis considering inherent spatial variability(ISV)of soil properties is timeconsuming when response surface method(RSM)is used,because of the"curse of dimensionality".This paper proposes an effective method for identification of representative slip surfaces(RSSs)of slopes with spatially varied soils within the framework of limit equilibrium method(LEM),which utilizes an adaptive K-means clustering approach.Then,an improved slope reliability analysis based on the RSSs and RSM considering soil spatial variability,in perspective of computation efficiency,is established.The detailed implementation procedure of the proposed method is well documented,and the ability of the method in identifying RSSs and estimating reliability is investigated via three slope examples.Results show that the proposed method can automatically identify the RSSs of slope with only one evaluation of the conventional deterministic slope stability model.The RSSs are invariant with the statistics of soil properties,which allows parametric studies that are often required in slope reliability analysis to be efficiently achieved with ease.It is also found that the proposed method provides comparable values of factor of safety(FS)and probability of failure(Pf)of slopes with those obtained from direct analysis and lite rature.展开更多
This article presents two new kinds of artificial neural network (ANN) response surface methods (RSMs): the ANN RSM based on early stopping technique (ANNRSM-1), and the ANN RSM based on regularization theory ...This article presents two new kinds of artificial neural network (ANN) response surface methods (RSMs): the ANN RSM based on early stopping technique (ANNRSM-1), and the ANN RSM based on regularization theory (ANNRSM-2). The following improvements are made to the conventional ANN RSM (ANNRSM-0): 1) by monitoring the validation error during the training process, ANNRSM-1 determines the early stopping point and the training stopping point, and the weight vector at the early stopping point, which corresponds to the ANN model with the optimal generalization, is finally returned as the training result; 2) according to the regularization theory, ANNRSM-2 modifies the conventional training performance function by adding to it the sum of squares of the network weights, so the network weights are forced to have smaller values while the training error decreases. Tests show that the performance of ANN RSM becomes much better due to the above-mentioned improvements: first, ANNRSM-1 and ANNRSM-2 approximate to the limit state function (LSF) more accurately than ANNRSM-0; second, the estimated failure probabilities given by ANNRSM-1 and ANNRSM-2 have smaller errors than that obtained by ANNRSM-0; third, compared with ANNRSM-0, ANNRSM-1 and ANNRSM-2 require much fewer data samples to achieve stable failure probability results.展开更多
To reasonably implement the reliability analysis and describe the significance of influencing parameters for the multi-failure modes of turbine blisk, advanced multiple response surface method (AMRSM) was proposed for...To reasonably implement the reliability analysis and describe the significance of influencing parameters for the multi-failure modes of turbine blisk, advanced multiple response surface method (AMRSM) was proposed for multi-failure mode sensitivity analysis for reliability. The mathematical model of AMRSM was established and the basic principle of multi-failure mode sensitivity analysis for reliability with AMRSM was given. The important parameters of turbine blisk failures are obtained by the multi-failure mode sensitivity analysis of turbine blisk. Through the reliability sensitivity analyses of multiple failure modes (deformation, stress and strain) with the proposed method considering fluid-thermal-solid interaction, it is shown that the comprehensive reliability of turbine blisk is 0.9931 when the allowable deformation, stress and strain are 3.7 x 10(-3) m, 1.0023 x 10(9) Pa and 1.05 x 10(-2) m/m, respectively; the main impact factors of turbine blisk failure are gas velocity, gas temperature and rotational speed. As demonstrated in the comparison of methods (Monte Carlo (MC) method, traditional response surface method (RSM), multiple response surface method (MRSM) and AMRSM), the proposed AMRSM improves computational efficiency with acceptable computational accuracy. The efforts of this study provide the AMRSM with high precision and efficiency for multi-failure mode reliability analysis, and offer a useful insight for the reliability optimization design of multi-failure mode structure. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.展开更多
The umbilical cable is a vital component of subsea production systems that provide power,chemical agents,control signals et al.,and its requirement for reliability is exceedingly high.However,as the umbilical cable is...The umbilical cable is a vital component of subsea production systems that provide power,chemical agents,control signals et al.,and its requirement for reliability is exceedingly high.However,as the umbilical cable is a composite structure comprising multiple functional units,the reliability analysis of such cables involves numerous parameters that can impact calculation efficiency.In this paper,the reliability analysis of a new kind of umbilical cable with carbon fiber rod under tension is analyzed.The global dynamic analytical model is first established to determine the maximum tension load,then the local analytical model of umbilical cable including each unit are constructed by finite element method(FEM).Based on the mechanical analytical model,the reliability of umbilical cable under tension load is studied using response surface method(RSM)and Monte Carlo method.During the calculation process,a new tangent plane sampling method to calculate the response surface function(RSF)is proposed in this paper,which could make sampling points faster come close to the RSF curve,and it is proved that the calculation efficiency increases about 33%comparing with traditional method.展开更多
The fatigue life of aeroengine turbine disc presents great dispersion due to the randomness of the basic variables,such as applied load,working temperature,geometrical dimensions and material properties.In order to am...The fatigue life of aeroengine turbine disc presents great dispersion due to the randomness of the basic variables,such as applied load,working temperature,geometrical dimensions and material properties.In order to ameliorate reliability analysis efficiency without loss of reliability,the distributed collaborative response surface method(DCRSM) was proposed,and its basic theories were established in this work.Considering the failure dependency among the failure modes,the distributed response surface was constructed to establish the relationship between the failure mode and the relevant random variables.Then,the failure modes were considered as the random variables of system response to obtain the distributed collaborative response surface model based on structure failure criterion.Finally,the given turbine disc structure was employed to illustrate the feasibility and validity of the presented method.Through the comparison of DCRSM,Monte Carlo method(MCM) and the traditional response surface method(RSM),the results show that the computational precision for DCRSM is more consistent with MCM than RSM,while DCRSM needs far less computing time than MCM and RSM under the same simulation conditions.Thus,DCRSM is demonstrated to be a feasible and valid approach for improving the computational efficiency of reliability analysis for aeroengine turbine disc fatigue life with multiple random variables,and has great potential value for the complicated mechanical structure with multi-component and multi-failure mode.展开更多
Response surface method is used to study the reliability analysis of laterally loaded piles in sloping ground. A development load-displacement (p-y) curve for laterally loaded pile response in sloping ground is used...Response surface method is used to study the reliability analysis of laterally loaded piles in sloping ground. A development load-displacement (p-y) curve for laterally loaded pile response in sloping ground is used to model the pile-soil system, both the pile head displacement and the maximum bending moment of the piles are used as the performance criteria in this study. The reliability analysis method of the laterally loaded pile in sloping ground under the pile head displacement and the maximum bending moment failure modes is proposed, which is in good agreement with the Monte Carlo method. The influences on the probability index of failure by a number of parameters are discussed. It is shown that the variability of pile head displacement increases with the increase in the coefficients of variation of ultimate bearing capacity factor (Npu), secant elastic modulus at 50%(E50) and level load (H). A negative correlation between Npu and non-dimensional factor (λ) leads to less spread out probability density function (PDF) of the pile head displacement;in contrast, a positive correlation between Npu andλgives a great variation in the PDF of pile head displacement. As for bearing capacity factor on ground surface (Npo) and λ, both negative and positive correlations between them give a great variation in the PDF of pile head displacement, and a negative correlation will obviously increase the variability of the response.展开更多
Load shedding is a major problem in Central Africa, with negative consequences for both society and the economy. However, load profile analysis can help to alleviate this problem by providing valuable information abou...Load shedding is a major problem in Central Africa, with negative consequences for both society and the economy. However, load profile analysis can help to alleviate this problem by providing valuable information about consumer demand. This information can be used by power utilities to forecast and reduce power cuts effectively. In this study, the direct method was used to create load profiles for residential feeders in Kinshasa. The results showed that load shedding on weekends results in significant financial losses and changes in people’s behavior. In November 2022 alone, load shedding was responsible for $ 23,4 08,984 and $ 2 80,9 07,808 for all year in losses. The study also found that the SAIDI index for the southern direction of the Kinshasa distribution network was 122.49 hours per feeder, on average. This means that each feeder experienced an average of 5 days of load shedding in November 2022. The SAIFI index was 20 interruptions per feeder, on average, and the CAIDI index was 6 hours, on average, before power was restored. This study also proposes ten strategies for the reduction of load shedding in the Kinshasa and central Africa power distribution network and for the improvement of its reliability, namely: Improved load forecasting, Improvement of the grid infrastructure, Scheduling of load shedding, Demand management programs, Energy efficiency initiatives, Distributed Generation, Automation and Monitoring of the Grid, Education and engagement of the consumer, Policy and regulatory assistance, and Updated load profile analysis.展开更多
基金This project has been supported by the seience foundation of the doctorate programmes of the National Education Commission.
文摘It is stipulated in the China national document, named'The Economical Appraisal Methods for Construction Projects' that dynamic analysis should dominate the project economical appraisal methods. This paper has set up a dynamic investment forecast model for Yuanbaoshan Surface Coal Mine. Based on this model, the investment reliability using simulation and analytic methods has been analysed, and the probability that the designed internal rate of return can reach 8.4%, from economic points of view, have been also studied.
基金Project(51175017)supported by the National Natural Science Foundation of ChinaProject(YWF-12-RBYJ-008)supported by the Innovation Foundation of Beihang University for PhD Graduates,ChinaProject(20111102110011)supported by the Research Fund for the Doctoral Program of Higher Education of China
文摘To make the dynamic assembly reliability analysis more effective for complex machinery of multi-object multi-discipline(MOMD),distributed collaborative extremum response surface method(DCERSM)was proposed based on extremum response surface method(ERSM).Firstly,the basic theories of the ERSM and DCERSM were investigated,and the strengths of DCERSM were proved theoretically.Secondly,the mathematical model of the DCERSM was established based upon extremum response surface function(ERSF).Finally,this model was applied to the reliability analysis of blade-tip radial running clearance(BTRRC)of an aeroengine high pressure turbine(HPT)to verify its advantages.The results show that the DCERSM can not only reshape the possibility of the reliability analysis for the complex turbo machinery,but also greatly improve the computational speed,save the computational time and improve the computational efficiency while keeping the accuracy.Thus,the DCERSM is verified to be feasible and effective in the dynamic assembly reliability(DAR)analysis of complex machinery.Moreover,this method offers an useful insight for designing and optimizing the dynamic reliability of complex machinery.
文摘A general response surface(RS) method is presented for reliability analysis of complex structure/mechanism with fuzzy-random uncertainty both in basic variables and in failure state variables. On the basis of equivalent transformation from fuzzy basic variable to random basic variable, the fuzziness and randomness in the basic variables are considered simultaneously in the presented general RS method. Once the fuzzy basic variables are transformed into the random basic variables, the conventional RS method is employed to establish the general RS for the complex structure/mechanism with implicit limit state equation by finite element numerical simulation. Furthermore, the general failure probability is defined according to the probability formula for fuzzy-random event by taking the fuzziness and randomness in the failure-safety state into consideration, and an appropriate fuzzy operator is adopted to calculate the general failure probability for the complex structure/mechanism with multiple implicit failure modes. Finally, a general reliability analysis of an elastic linkage mechanism is introduced to illustrate the present method.
基金Project(51335003)supported by the National Natural Science Foundation of ChinaProject(20111102110011)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘To ameliorate reliability analysis efficiency for aeroengine components, such as compressor blade, support vector machine response surface method(SRSM) is proposed. SRSM integrates the advantages of support vector machine(SVM) and traditional response surface method(RSM), and utilizes experimental samples to construct a suitable response surface function(RSF) to replace the complicated and abstract finite element model. Moreover, the randomness of material parameters, structural dimension and operating condition are considered during extracting data so that the response surface function is more agreeable to the practical model. The results indicate that based on the same experimental data, SRSM has come closer than RSM reliability to approximating Monte Carlo method(MCM); while SRSM(17.296 s) needs far less running time than MCM(10958 s) and RSM(9840 s). Therefore,under the same simulation conditions, SRSM has the largest analysis efficiency, and can be considered a feasible and valid method to analyze structural reliability.
基金Funded by the National Natural Science Foundation of China (No. S50778057) the Research Fund for the Doctoral Program of Higher Education (No. 20060213002)
文摘Based on statistics principle,random error and systematic error were considered and the volumetric properties of the two mixtures types,namely A and B,were statistically analyzed using different distribution methods.Seventy-two samples of mixture A and fifty-two of mixture B were fabricated using the Marshall method.The probability distributions were compared on the basis of goodness of fit.Weibull model was found to be most appropriate model for describing the asphalt mixtures volumetric properties distribution.The two-parameter Weibull distribution function applied well to model the bulk specific gravity and voids filled with asphalt data,whereas,the three-parameter Weibull distribution appeared to be more appropriate in the discussing of air voids and voids in mineral aggregate.The experimetal results is revealed that compared with the mean value,the peak value of Weibull distribution was suggested as an alternative and more powerful parameter for describing the test data distribution characteristic.The analysis of test results also revealed that there were significant differences in the volumetric properties of the two tested mixtures for the same confidence level.The confidence interval decreased with the decreasing in reliability.
基金This project was funded by the Deanship of Scientific Research(DSR),King Abdulaziz University,Jeddah,Saudi Arabia under Grant No.(KEP-81-130-42)The authors,therefore acknowledge with thanks DSR technical and financial support。
文摘Security is a vital parameter to conserve energy in wireless sensor networks(WSN).Trust management in the WSN is a crucial process as trust is utilized when collaboration is important for accomplishing trustworthy data transmission.But the available routing techniques do not involve security in the design of routing techniques.This study develops a novel statistical analysis with dingo optimizer enabled reliable routing scheme(SADO-RRS)for WSN.The proposed SADO-RRS technique aims to detect the existence of attacks and optimal routes in WSN.In addition,the presented SADORRS technique derives a new statistics based linear discriminant analysis(LDA)for attack detection,Moreover,a trust based dingo optimizer(TBDO)algorithm is applied for optimal route selection in the WSN and accomplishes secure data transmission in WSN.Besides,the TBDO algorithm involves the derivation of the fitness function involving different input variables of WSN.For demonstrating the enhanced outcomes of the SADO-RRS technique,a wide range of simulations was carried out and the outcomes demonstrated the enhanced outcomes of the SADO-RRS technique.
文摘This paper presents the data on operation reliability indices and relevant analyses toward China's conventional power generating units in 2009.The units brought into the statistical analysis include 100-MW or above thermal generating units,40-MW or above hydro generating units,and all nuclear generating units.The reliability indices embodied include utilization hours,times and hours of scheduled outages,times and hours of unscheduled outages,equivalent forced outage rate and equivalent availability factor.
基金supported by National Natural Science Foundation of China(Grant Nos.51175017,51245027)Innovation Foundation of Beihang University for PhD Graduates,China(Grant No.YWF-12-RBYJ008)Research Fund for the Doctoral Program of Higher Education of China(Grant No.20111102110011)
文摘Because of the randomness of many impact factors influencing the dynamic assembly relationship of complex machinery, the reliability analysis of dynamic assembly relationship needs to be accomplished considering the randomness from a probabilistic perspective. To improve the accuracy and efficiency of dynamic assembly relationship reliability analysis, the mechanical dynamic assembly reliability(MDAR) theory and a distributed collaborative response surface method(DCRSM) are proposed. The mathematic model of DCRSM is established based on the quadratic response surface function, and verified by the assembly relationship reliability analysis of aeroengine high pressure turbine(HPT) blade-tip radial running clearance(BTRRC). Through the comparison of the DCRSM, traditional response surface method(RSM) and Monte Carlo Method(MCM), the results show that the DCRSM is not able to accomplish the computational task which is impossible for the other methods when the number of simulation is more than 100 000 times, but also the computational precision for the DCRSM is basically consistent with the MCM and improved by 0.40-4.63% to the RSM, furthermore, the computational efficiency of DCRSM is up to about 188 times of the MCM and 55 times of the RSM under 10000 times simulations. The DCRSM is demonstrated to be a feasible and effective approach for markedly improving the computational efficiency and accuracy of MDAR analysis. Thus, the proposed research provides the promising theory and method for the MDAR design and optimization, and opens a novel research direction of probabilistic analysis for developing the high-performance and high-reliability of aeroengine.
基金The Soft Science Research Project of Ministry of Housing and Urban-Rural Development of China (No. 2008-k5-14)
文摘In order to provide important parameters for schedule designing, decision-making bases for transit operation management and references for passengers traveling by bus, bus transit travel time reliability is analyzed and evaluated based on automatic vehicle location (AVL) data. Based on the statistical analysis of the bus transit travel time, six indices including the coefficient of variance, the width of travel time distribution, the mean commercial speed, the congestion frequency, the planning time index and the buffer time index are proposed. Moreover, a framework for evaluating bus transit travel time reliability is constructed. Finally, a case study on a certain bus route in Suzhou is conducted. Results show that the proposed evaluation index system is simple and intuitive, and it can effectively reflect the efficiency and stability of bus operations. And a distinguishing feature of bus transit travel time reliability is the temporal pattern. It varies across different time periods.
文摘Electromagnetic relay in aerospace is one of the main electronic components in aerospace electronic systems for information transfer, control and power distribution, and its reliability will influence the reliability of the whole aerospace electronic systems. Reliability design is the key technique of electromagnetic relay reliability engineering. This paper synthetically analyzes the present reliability design methods, and presents the reliability tolerance analyzing mathematic models of electromagnetic force basing on orthogonal design, mechanical spring force basing on probability statistics theory, and matching characteristics of electromagnetic force and mechanical spring force basing on method of stressstrength interference. Some instructive conclusions are draw by researching on the reliability tolerance of some type electromagnetic relay in aerospace.
文摘An efficient resampling reliability approach was developed to consider the effect of statistical uncertainties in input properties arising due to insufficient data when estimating the reliability of rock slopes and tunnels.This approach considers the effect of uncertainties in both distribution parameters(mean and standard deviation)and types of input properties.Further,the approach was generalized to make it capable of analyzing complex problems with explicit/implicit performance functions(PFs),single/multiple PFs,and correlated/non-correlated input properties.It couples resampling statistical tool,i.e.jackknife,with advanced reliability tools like Latin hypercube sampling(LHS),Sobol’s global sensitivity,moving least square-response surface method(MLS-RSM),and Nataf’s transformation.The developed approach was demonstrated for four cases encompassing different types.Results were compared with a recently developed bootstrap-based resampling reliability approach.The results show that the approach is accurate and significantly efficient compared with the bootstrap-based approach.The proposed approach reflects the effect of statistical uncertainties of input properties by estimating distributions/confidence intervals of reliability index/probability of failure(s)instead of their fixed-point estimates.Further,sufficiently accurate results were obtained by considering uncertainties in distribution parameters only and ignoring those in distribution types.
基金supported by National Natural Science Foundation of China(No.52078086)Natural Science Foundation,Chongqing(No.CSTB2022NSCQ-LZX0001)+2 种基金NationalEngineering Research Center of Gas Hydrate Exploration and Development(No.NERCY[202406])Guangdong Basic and Applied Basic Research Foundation(No.2023A1515011375)Innovative Projects of Universities in Guangdong(No.2022KTSCX208).
文摘Reliability analysis plays an important role in the risk management of geotechnical engineering.For the random field-based method,it is expected that the uncertainty characterization of geo-material parameters and the realization of random field can be integrated effectively.Moreover,as the increase in measured data size is generally difficult in the field investigation of geotechnical engineering due to limitation of budget and time etc.,the statistical uncertainty resulting from sparse data should be paid great attention.Therefore,taking the determination of hyper-parameters for Bayesian-based conditional random field as the breakthrough,this study proposed a reliability analysis framework to achieve the expectation above.In this proposed reliability analysis framework,the present characterization method of statistical uncertainty is improved by setting the lognormal distribution as the prior distribution of scale of fluctuation(SOF).Subsequently,the performance of statistical uncertainty characterization method is tested by a set of unconfined compressive strength(UCS)database about rocks.Then,a case study about the stability analysis of slope is employed to demonstrate the beneficial effect of the proposed reliability analysis framework.It is found that the uncertainty in both the realization of random field and the reliability analysis results can be significantly mitigated by the proposed reliability analysis framework.
基金Sponsored by National Nature Science Foundation of China(70771038).
文摘For the gradual maturity of Bayesian survival analysis theory,as well as the defects of the traditional methods for storage reliability evaluation,the Bayesian survival analysis method is proposed to build regression models for reliability in the random truncated test.These models can reflect the influences of different environments on the ammunition storage lifetime.As an example,the common exponential distribution is used here,and Markov chain Monte Carlo(MCMC)method based on Gibbs sampling dynamically simulates the Markov chain of the parameters' posterior distribution.Also,the parameters' Bayesian estimations are calculated in the random truncated condition.The simulation results show that the proposed method is effective and directly perceived.
基金The work described in this paper was nancially supported by the Natural Science Foundation of China(Grant Nos.51709258,51979270 and 41902291),the CAS Pioneer Hundred Talents Pro-gram and the Research Foundation of Key Laboratory of Deep Geodrilling Technology,Ministry of Land and Resources,China(Grant No.F201801).
文摘Slope reliability analysis considering inherent spatial variability(ISV)of soil properties is timeconsuming when response surface method(RSM)is used,because of the"curse of dimensionality".This paper proposes an effective method for identification of representative slip surfaces(RSSs)of slopes with spatially varied soils within the framework of limit equilibrium method(LEM),which utilizes an adaptive K-means clustering approach.Then,an improved slope reliability analysis based on the RSSs and RSM considering soil spatial variability,in perspective of computation efficiency,is established.The detailed implementation procedure of the proposed method is well documented,and the ability of the method in identifying RSSs and estimating reliability is investigated via three slope examples.Results show that the proposed method can automatically identify the RSSs of slope with only one evaluation of the conventional deterministic slope stability model.The RSSs are invariant with the statistics of soil properties,which allows parametric studies that are often required in slope reliability analysis to be efficiently achieved with ease.It is also found that the proposed method provides comparable values of factor of safety(FS)and probability of failure(Pf)of slopes with those obtained from direct analysis and lite rature.
基金National High-tech Research and Development Program of China (2006AA04Z405)
文摘This article presents two new kinds of artificial neural network (ANN) response surface methods (RSMs): the ANN RSM based on early stopping technique (ANNRSM-1), and the ANN RSM based on regularization theory (ANNRSM-2). The following improvements are made to the conventional ANN RSM (ANNRSM-0): 1) by monitoring the validation error during the training process, ANNRSM-1 determines the early stopping point and the training stopping point, and the weight vector at the early stopping point, which corresponds to the ANN model with the optimal generalization, is finally returned as the training result; 2) according to the regularization theory, ANNRSM-2 modifies the conventional training performance function by adding to it the sum of squares of the network weights, so the network weights are forced to have smaller values while the training error decreases. Tests show that the performance of ANN RSM becomes much better due to the above-mentioned improvements: first, ANNRSM-1 and ANNRSM-2 approximate to the limit state function (LSF) more accurately than ANNRSM-0; second, the estimated failure probabilities given by ANNRSM-1 and ANNRSM-2 have smaller errors than that obtained by ANNRSM-0; third, compared with ANNRSM-0, ANNRSM-1 and ANNRSM-2 require much fewer data samples to achieve stable failure probability results.
基金co-supported by the National Natural Science Foundation of China (No. 51275138)the Science Foundation of Heilongjiang Provincial Department of Education (No. 12531109)+1 种基金the funding of Hong Kong Scholars Programs (Nos. XJ2015002 and G-YZ90)China’s Postdoctoral Science Funding (No. 2015M580037)
文摘To reasonably implement the reliability analysis and describe the significance of influencing parameters for the multi-failure modes of turbine blisk, advanced multiple response surface method (AMRSM) was proposed for multi-failure mode sensitivity analysis for reliability. The mathematical model of AMRSM was established and the basic principle of multi-failure mode sensitivity analysis for reliability with AMRSM was given. The important parameters of turbine blisk failures are obtained by the multi-failure mode sensitivity analysis of turbine blisk. Through the reliability sensitivity analyses of multiple failure modes (deformation, stress and strain) with the proposed method considering fluid-thermal-solid interaction, it is shown that the comprehensive reliability of turbine blisk is 0.9931 when the allowable deformation, stress and strain are 3.7 x 10(-3) m, 1.0023 x 10(9) Pa and 1.05 x 10(-2) m/m, respectively; the main impact factors of turbine blisk failure are gas velocity, gas temperature and rotational speed. As demonstrated in the comparison of methods (Monte Carlo (MC) method, traditional response surface method (RSM), multiple response surface method (MRSM) and AMRSM), the proposed AMRSM improves computational efficiency with acceptable computational accuracy. The efforts of this study provide the AMRSM with high precision and efficiency for multi-failure mode reliability analysis, and offer a useful insight for the reliability optimization design of multi-failure mode structure. (C) 2016 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license.
基金Financial support for this research was provided by the National Natural Science Foundation of China (Grant No.52222111)。
文摘The umbilical cable is a vital component of subsea production systems that provide power,chemical agents,control signals et al.,and its requirement for reliability is exceedingly high.However,as the umbilical cable is a composite structure comprising multiple functional units,the reliability analysis of such cables involves numerous parameters that can impact calculation efficiency.In this paper,the reliability analysis of a new kind of umbilical cable with carbon fiber rod under tension is analyzed.The global dynamic analytical model is first established to determine the maximum tension load,then the local analytical model of umbilical cable including each unit are constructed by finite element method(FEM).Based on the mechanical analytical model,the reliability of umbilical cable under tension load is studied using response surface method(RSM)and Monte Carlo method.During the calculation process,a new tangent plane sampling method to calculate the response surface function(RSF)is proposed in this paper,which could make sampling points faster come close to the RSF curve,and it is proved that the calculation efficiency increases about 33%comparing with traditional method.
基金Project(51335003)supported by the National Natural Science Foundation of ChinaProject(20111102110011)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China
文摘The fatigue life of aeroengine turbine disc presents great dispersion due to the randomness of the basic variables,such as applied load,working temperature,geometrical dimensions and material properties.In order to ameliorate reliability analysis efficiency without loss of reliability,the distributed collaborative response surface method(DCRSM) was proposed,and its basic theories were established in this work.Considering the failure dependency among the failure modes,the distributed response surface was constructed to establish the relationship between the failure mode and the relevant random variables.Then,the failure modes were considered as the random variables of system response to obtain the distributed collaborative response surface model based on structure failure criterion.Finally,the given turbine disc structure was employed to illustrate the feasibility and validity of the presented method.Through the comparison of DCRSM,Monte Carlo method(MCM) and the traditional response surface method(RSM),the results show that the computational precision for DCRSM is more consistent with MCM than RSM,while DCRSM needs far less computing time than MCM and RSM under the same simulation conditions.Thus,DCRSM is demonstrated to be a feasible and valid approach for improving the computational efficiency of reliability analysis for aeroengine turbine disc fatigue life with multiple random variables,and has great potential value for the complicated mechanical structure with multi-component and multi-failure mode.
基金Projects(5147847951322403)supported by the National Natural Science Foundation of China+3 种基金Project(2015CX005)supported by Innovation Driven Plan of Central South University,ChinaProject(14JJ4003)supported by Hunan Provincial Natural Science Foundation,ChinaProject(SKLGP2014K008)supported by Opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology,ChinaProject(2015CB060200)supported by the National Basic Research Program of China
文摘Response surface method is used to study the reliability analysis of laterally loaded piles in sloping ground. A development load-displacement (p-y) curve for laterally loaded pile response in sloping ground is used to model the pile-soil system, both the pile head displacement and the maximum bending moment of the piles are used as the performance criteria in this study. The reliability analysis method of the laterally loaded pile in sloping ground under the pile head displacement and the maximum bending moment failure modes is proposed, which is in good agreement with the Monte Carlo method. The influences on the probability index of failure by a number of parameters are discussed. It is shown that the variability of pile head displacement increases with the increase in the coefficients of variation of ultimate bearing capacity factor (Npu), secant elastic modulus at 50%(E50) and level load (H). A negative correlation between Npu and non-dimensional factor (λ) leads to less spread out probability density function (PDF) of the pile head displacement;in contrast, a positive correlation between Npu andλgives a great variation in the PDF of pile head displacement. As for bearing capacity factor on ground surface (Npo) and λ, both negative and positive correlations between them give a great variation in the PDF of pile head displacement, and a negative correlation will obviously increase the variability of the response.
文摘Load shedding is a major problem in Central Africa, with negative consequences for both society and the economy. However, load profile analysis can help to alleviate this problem by providing valuable information about consumer demand. This information can be used by power utilities to forecast and reduce power cuts effectively. In this study, the direct method was used to create load profiles for residential feeders in Kinshasa. The results showed that load shedding on weekends results in significant financial losses and changes in people’s behavior. In November 2022 alone, load shedding was responsible for $ 23,4 08,984 and $ 2 80,9 07,808 for all year in losses. The study also found that the SAIDI index for the southern direction of the Kinshasa distribution network was 122.49 hours per feeder, on average. This means that each feeder experienced an average of 5 days of load shedding in November 2022. The SAIFI index was 20 interruptions per feeder, on average, and the CAIDI index was 6 hours, on average, before power was restored. This study also proposes ten strategies for the reduction of load shedding in the Kinshasa and central Africa power distribution network and for the improvement of its reliability, namely: Improved load forecasting, Improvement of the grid infrastructure, Scheduling of load shedding, Demand management programs, Energy efficiency initiatives, Distributed Generation, Automation and Monitoring of the Grid, Education and engagement of the consumer, Policy and regulatory assistance, and Updated load profile analysis.