Statistical Energy Analysis(SEA) is one of the conventional tools for predicting vehicle high-frequency acoustic responses.This study proposes a new method that can provide customized optimization solutions to meet NV...Statistical Energy Analysis(SEA) is one of the conventional tools for predicting vehicle high-frequency acoustic responses.This study proposes a new method that can provide customized optimization solutions to meet NVH targets based on the specific needs of different project teams during the initial project stages.This approach innovatively integrates dynamic optimization,Radial Basis Function(RBF),and Fuzzy Design Variables Genetic Algorithm(FDVGA) into the optimization process of Statistical Energy Analysis(SEA),and also takes vehicle sheet metal into account in the optimization of sound packages.In the implementation process,a correlation model is established through Python scripts to link material density with acoustic parameters,weight,and cost.By combining Optimus and VaOne software,an optimization design workflow is constructed and the optimization design process is successfully executed.Under various constraints related to acoustic performance,weight and cost,a globally optimal design is achieved.This technology has been effectively applied in the field of Battery Electric Vehicle(BEV).展开更多
How to simulate interior aerodynamic noise accurately is an important question of a car interior noise reduction. The unsteady aerodynamic pressure on body surfaces is proved to be the key effect factor of car interio...How to simulate interior aerodynamic noise accurately is an important question of a car interior noise reduction. The unsteady aerodynamic pressure on body surfaces is proved to be the key effect factor of car interior aerodynamic noise control in high frequency on high speed. In this paper, a detail statistical energy analysis (SEA) model is built. And the vibra-acoustic power inputs are loaded on the model for the valid result of car interior noise analysis. The model is the solid foundation for further optimization on car interior noise control. After the most sensitive subsystems for the power contribution to car interior noise are pointed by SEA comprehensive analysis, the sound pressure level of car interior aerodynamic noise can be reduced by improving their sound and damping characteristics. The further vehicle testing results show that it is available to improve the interior acoustic performance by using detailed SEA model, which comprised by more than 80 subsystems, with the unsteady aerodynamic pressure calculation on body surfaces and the materials improvement of sound/damping properties. It is able to acquire more than 2 dB reduction on the central frequency in the spectrum over 800 Hz. The proposed optimization method can be looked as a reference of car interior aerodynamic noise control by the detail SEA model integrated unsteady computational fluid dynamics (CFD) and sensitivity analysis of acoustic contribution.展开更多
Statistical Energy Analysis(SEA)is a well-known method to analyze the flow of acoustic and vibration energy in a complex structure.This study investigates the application of the corrected SEA model in a non-reverberan...Statistical Energy Analysis(SEA)is a well-known method to analyze the flow of acoustic and vibration energy in a complex structure.This study investigates the application of the corrected SEA model in a non-reverberant acoustic space where the direct field component from the sound source dominates the total sound field rather than a diffuse field in a reverberant space which the classical SEA model assumption is based on.A corrected SEA model is proposed where the direct field component in the energy is removed and the power injected in the subsystem considers only the remaining power after the loss at first reflection.Measurement was conducted in a box divided into two rooms separated by a partition with an opening where the condition of reverberant and non-reverberant can conveniently be controlled.In the case of a non-reverberant space where acoustic material was installed inside the wall of the experimental box,the signals are corrected by eliminating the direct field component in the measured impulse response.Using the corrected SEA model,comparison of the coupling loss factor(CLF)and damping loss factor(DLF)with the theory shows good agreement.展开更多
The energy balance equations in the Classical Statistical Energy Analysis (CSEA) are modified by the equations of power flow among the thtee serial coupled oscinators. The modified equations include not only the direc...The energy balance equations in the Classical Statistical Energy Analysis (CSEA) are modified by the equations of power flow among the thtee serial coupled oscinators. The modified equations include not only the direct power flow, but also the indirect power flow. The parameters in the modified equations can be expressed by those in the classical equations when the accuracy of the predicted results is able to satisfy the needs for ellgineering.展开更多
Based on the principle of Statistical Energy Analysis (SEA) for non-conservatively coupled dynamical systems under non-correlative or correlative excitations, energy relationship between two similar SEA systems is est...Based on the principle of Statistical Energy Analysis (SEA) for non-conservatively coupled dynamical systems under non-correlative or correlative excitations, energy relationship between two similar SEA systems is established in the paper. The energy relationship is verified theoretically and experimentally from two similar SEA systems i.e., the structure of a coupled panel-beam and that of a coupled panel-sideframe, in the cases of conservative coupling and non-conservative coupling respectively. As an application of the method, relationship between noise power radiated from two similar cutting systems is studied. Results show that there are good agreements between the theory and the experiments, and the method is valuable to analysis of dyuamical problems associated with a complicated system from that with a simple one.展开更多
Traditional Statistical Energy Analysis (SEA) theory can not deal with dynamic problems concerned with non-conservatively coupled systems. In this paper, based on the theory of power flow between them and energy distr...Traditional Statistical Energy Analysis (SEA) theory can not deal with dynamic problems concerned with non-conservatively coupled systems. In this paper, based on the theory of power flow between them and energy distribution in non-conservatively coupled osillators, equations of power balance and those for calculation of each concerned power flow and other power items are derived to develop SEA theory for non-conscrvativcly coupled systems. Results show that conservative coupling is only a special case of non-conservative coupling situations, effect of coupling damping on power flow and energy distribution in non-conservatively coupled systems arc not negligible unless coupling damping is much smaller compared with internal one. As an application of the theory, energy problems of non-conservatively coupled plates are studied theoretically and experimentally.展开更多
It is difficult to study the contribution to total cutting noise of each sound radiator in cutting system by means of traditional theoretical or experimental methods. In this paper, problems associated with cylindrica...It is difficult to study the contribution to total cutting noise of each sound radiator in cutting system by means of traditional theoretical or experimental methods. In this paper, problems associated with cylindrical thin shell 's cutting noise are studied by applying Statistical Energy Analysis of Non-Conservatively Coupled Systems under Correlative Power Input. Theory and techniques for parameter evaluation, cutting system modelling and other important problems concerned are also discussed. Results show that cutting noise is mainly from the sound radiation of workpiece in cutting process, and Statistical Energy Analysis can be applied successfully to the research of large cylindrical shell 's cutting noise.展开更多
Statistical analysis was done on simultaneous wave and wind using data recorded by discus-shape wave buoy. The area is located in the southern Caspian Sea near the Anzali Port. Recorded wave data were obtained through...Statistical analysis was done on simultaneous wave and wind using data recorded by discus-shape wave buoy. The area is located in the southern Caspian Sea near the Anzali Port. Recorded wave data were obtained through directional spectrum wave analysis. Recorded wind direction and wind speed were obtained through the related time series as well. For 12-month measurements(May 25 2007-2008), statistical calculations were done to specify the value of nonlinear auto-correlation of wave and wind using the probability distribution function of wave characteristics and statistical analysis in various time periods. The paper also presents and analyzes the amount of wave energy for the area mentioned on the basis of available database. Analyses showed a suitable comparison between the amounts of wave energy in different seasons. As a result, the best period for the largest amount of wave energy was known. Results showed that in the research period, the mean wave and wind auto correlation were about three hours. Among the probability distribution functions, i.e Weibull, Normal, Lognormal and Rayleigh, "Weibull" had the best consistency with experimental distribution function shown in different diagrams for each season. Results also showed that the mean wave energy in the research period was about 49.88 k W/m and the maximum density of wave energy was found in February and March, 2010.展开更多
To take into account the influence of uncetainties on the dynamic response of the vibro-acousitc structure, a hybrid modeling technique combining the finite element method(FE)and the statistic energy analysis(SEA)...To take into account the influence of uncetainties on the dynamic response of the vibro-acousitc structure, a hybrid modeling technique combining the finite element method(FE)and the statistic energy analysis(SEA) is proposed to analyze vibro-acoustics responses with uncertainties at middle frequencies. The mid-frequency dynamic response of the framework-plate structure with uncertainties is studied based on the hybrid FE-SEA method and the Monte Carlo(MC)simulation is performed so as to provide a benchmark comparison with the hybrid method. The energy response of the framework-plate structure matches well with the MC simulation results, which validates the effectiveness of the hybrid FE-SEA method considering both the complexity of the vibro-acoustic structure and the uncertainties in mid-frequency vibro-acousitc analysis. Based on the hybrid method, a vibroacoustic model of a construction machinery cab with random properties is established, and the excitations of the model are measured by experiments. The responses of the sound pressure level of the cab and the vibration power spectrum density of the front windscreen are calculated and compared with those of the experiment. At middle frequencies, the results have a good consistency with the tests and the prediction error is less than 3. 5dB.展开更多
In order to improve the mass efficiency of an automotive soundproof package, it is important to predict the middle to high frequency range of noise and vibration during vehicle operation. A hybrid method of experiment...In order to improve the mass efficiency of an automotive soundproof package, it is important to predict the middle to high frequency range of noise and vibration during vehicle operation. A hybrid method of experimental and analytical SEA (statistical energy analysis) has been applied for the prediction of air-borne noise. However, for predicting structure-borne noise, there are no definitive simulation methods that can address the soundproof specifications in an actual vehicle. Thus, in this paper, a FEM (finite element method)'SEA hybrid method is used. The FEM'SEA hybrid method predicts structure-borne noise in the middle to high frequency range. First, we explain the basic concept of the FEM'SEA hybrid method; Second, we describe our experiment to verify the analytical results of the FEM'SEA hybrid method; Third, we provide the details of the FEM model versus the FEM'SEA hybrid model; Finally, we verify the validity and availability of the FEM'SEA hybrid method through comparisons of the FEM analysis results, FEM-SEA analysis results and measured results.展开更多
The similitude theory helps to understand the physical behaviors of large structures through scaled models. Several papers have studied the similitude of shock issues. However, the dynamic similitude for shock respons...The similitude theory helps to understand the physical behaviors of large structures through scaled models. Several papers have studied the similitude of shock issues. However, the dynamic similitude for shock responses of coupled structures is rarely incorporated in open studies. In this paper, scaling laws are derived for the shock responses and spectra of coupled structures. In the presented scaling laws, the geometric distortion and energy loss are considered. The ability of the proposed scaling laws is demonstrated in the simulation and experimental cases. In both cases, the similitude prediction for the prototype's time-domain waveform and spectrum is conducted with the scaled model and scaling laws. The simulation and experimental cases indicate that the predicted shock responses and spectra agree well with those of the prototype, which verifies the proposed scaling laws for predicting shock responses.展开更多
The transmission of transverse vibrational energy of a vertically rigid beam plate coupled structure is analyzed to get the theoretical results of coupling loss factor(CLF), a very important parameter in statistical ...The transmission of transverse vibrational energy of a vertically rigid beam plate coupled structure is analyzed to get the theoretical results of coupling loss factor(CLF), a very important parameter in statistical energy analysis(SEA). The modal analysis method is used to discuss the vibration energy of the typical model, as well as the power flow between the two subsystems. Furthermore, the resolution to the coupling loss factor is also derived and compared with the measured values. The analytical results of the coupling loss factor agree with the measured ones fully, this new resolution is significant for the application of SEA.展开更多
The acoustic behavior of double-walled laminated composite panels consisting of two porous and air gap middle layers is studied within the classical laminated plate theory (CLPT). Thus, viscous and inertia coupling ...The acoustic behavior of double-walled laminated composite panels consisting of two porous and air gap middle layers is studied within the classical laminated plate theory (CLPT). Thus, viscous and inertia coupling in a dynamic equation, as well as stress transfer, thermal and elastic coupling of porous material ave based on the Biot theory. In addition, the wave equations are extracted according to the vibration equation of composite layers. The transmission loss (TL) of the structure is then calculated by solving these equations simultaneously. Statistical energy analysis (SEA) is developed to divide the structure into specific subsystems, and power transmission is extracted with balancing power flow equations of the subsystems. Comparison between the present work and the results reported elsewhere shows excellent agreement. The results also indicate that, although favorable enhancement is seen in noise control particularly at high frequencies, the corresponding parameters associated with fluid phase and solid phase of the porous layer are important on TL according to the boundary condition interfaces. Finally, the influence of composite material and stacking sequence on power transmission is discussed.展开更多
文摘Statistical Energy Analysis(SEA) is one of the conventional tools for predicting vehicle high-frequency acoustic responses.This study proposes a new method that can provide customized optimization solutions to meet NVH targets based on the specific needs of different project teams during the initial project stages.This approach innovatively integrates dynamic optimization,Radial Basis Function(RBF),and Fuzzy Design Variables Genetic Algorithm(FDVGA) into the optimization process of Statistical Energy Analysis(SEA),and also takes vehicle sheet metal into account in the optimization of sound packages.In the implementation process,a correlation model is established through Python scripts to link material density with acoustic parameters,weight,and cost.By combining Optimus and VaOne software,an optimization design workflow is constructed and the optimization design process is successfully executed.Under various constraints related to acoustic performance,weight and cost,a globally optimal design is achieved.This technology has been effectively applied in the field of Battery Electric Vehicle(BEV).
基金supported by National Natural Science Foundation of China (Grant No. 51175214)Scientific and Technological Planning Project of China (Grant No. 2011BAG03B01-1)Based Research Operation Expenses Project of Jilin University, China (Grant No. 421032572415)
文摘How to simulate interior aerodynamic noise accurately is an important question of a car interior noise reduction. The unsteady aerodynamic pressure on body surfaces is proved to be the key effect factor of car interior aerodynamic noise control in high frequency on high speed. In this paper, a detail statistical energy analysis (SEA) model is built. And the vibra-acoustic power inputs are loaded on the model for the valid result of car interior noise analysis. The model is the solid foundation for further optimization on car interior noise control. After the most sensitive subsystems for the power contribution to car interior noise are pointed by SEA comprehensive analysis, the sound pressure level of car interior aerodynamic noise can be reduced by improving their sound and damping characteristics. The further vehicle testing results show that it is available to improve the interior acoustic performance by using detailed SEA model, which comprised by more than 80 subsystems, with the unsteady aerodynamic pressure calculation on body surfaces and the materials improvement of sound/damping properties. It is able to acquire more than 2 dB reduction on the central frequency in the spectrum over 800 Hz. The proposed optimization method can be looked as a reference of car interior aerodynamic noise control by the detail SEA model integrated unsteady computational fluid dynamics (CFD) and sensitivity analysis of acoustic contribution.
基金the financial support provided for this project by the Ministry of Higher Education Malaysia(MoHE)under Fundamental Research Grant Scheme No.FRGS/1/2016/FTK-CARE/F00323.
文摘Statistical Energy Analysis(SEA)is a well-known method to analyze the flow of acoustic and vibration energy in a complex structure.This study investigates the application of the corrected SEA model in a non-reverberant acoustic space where the direct field component from the sound source dominates the total sound field rather than a diffuse field in a reverberant space which the classical SEA model assumption is based on.A corrected SEA model is proposed where the direct field component in the energy is removed and the power injected in the subsystem considers only the remaining power after the loss at first reflection.Measurement was conducted in a box divided into two rooms separated by a partition with an opening where the condition of reverberant and non-reverberant can conveniently be controlled.In the case of a non-reverberant space where acoustic material was installed inside the wall of the experimental box,the signals are corrected by eliminating the direct field component in the measured impulse response.Using the corrected SEA model,comparison of the coupling loss factor(CLF)and damping loss factor(DLF)with the theory shows good agreement.
文摘The energy balance equations in the Classical Statistical Energy Analysis (CSEA) are modified by the equations of power flow among the thtee serial coupled oscinators. The modified equations include not only the direct power flow, but also the indirect power flow. The parameters in the modified equations can be expressed by those in the classical equations when the accuracy of the predicted results is able to satisfy the needs for ellgineering.
基金supported by the Natural Science Foundation of Shandong Province of China.
文摘Based on the principle of Statistical Energy Analysis (SEA) for non-conservatively coupled dynamical systems under non-correlative or correlative excitations, energy relationship between two similar SEA systems is established in the paper. The energy relationship is verified theoretically and experimentally from two similar SEA systems i.e., the structure of a coupled panel-beam and that of a coupled panel-sideframe, in the cases of conservative coupling and non-conservative coupling respectively. As an application of the method, relationship between noise power radiated from two similar cutting systems is studied. Results show that there are good agreements between the theory and the experiments, and the method is valuable to analysis of dyuamical problems associated with a complicated system from that with a simple one.
文摘Traditional Statistical Energy Analysis (SEA) theory can not deal with dynamic problems concerned with non-conservatively coupled systems. In this paper, based on the theory of power flow between them and energy distribution in non-conservatively coupled osillators, equations of power balance and those for calculation of each concerned power flow and other power items are derived to develop SEA theory for non-conscrvativcly coupled systems. Results show that conservative coupling is only a special case of non-conservative coupling situations, effect of coupling damping on power flow and energy distribution in non-conservatively coupled systems arc not negligible unless coupling damping is much smaller compared with internal one. As an application of the theory, energy problems of non-conservatively coupled plates are studied theoretically and experimentally.
文摘It is difficult to study the contribution to total cutting noise of each sound radiator in cutting system by means of traditional theoretical or experimental methods. In this paper, problems associated with cylindrical thin shell 's cutting noise are studied by applying Statistical Energy Analysis of Non-Conservatively Coupled Systems under Correlative Power Input. Theory and techniques for parameter evaluation, cutting system modelling and other important problems concerned are also discussed. Results show that cutting noise is mainly from the sound radiation of workpiece in cutting process, and Statistical Energy Analysis can be applied successfully to the research of large cylindrical shell 's cutting noise.
文摘Statistical analysis was done on simultaneous wave and wind using data recorded by discus-shape wave buoy. The area is located in the southern Caspian Sea near the Anzali Port. Recorded wave data were obtained through directional spectrum wave analysis. Recorded wind direction and wind speed were obtained through the related time series as well. For 12-month measurements(May 25 2007-2008), statistical calculations were done to specify the value of nonlinear auto-correlation of wave and wind using the probability distribution function of wave characteristics and statistical analysis in various time periods. The paper also presents and analyzes the amount of wave energy for the area mentioned on the basis of available database. Analyses showed a suitable comparison between the amounts of wave energy in different seasons. As a result, the best period for the largest amount of wave energy was known. Results showed that in the research period, the mean wave and wind auto correlation were about three hours. Among the probability distribution functions, i.e Weibull, Normal, Lognormal and Rayleigh, "Weibull" had the best consistency with experimental distribution function shown in different diagrams for each season. Results also showed that the mean wave energy in the research period was about 49.88 k W/m and the maximum density of wave energy was found in February and March, 2010.
基金Science and Technology Support Planning of Jiangsu Province(No.BE2014133)the Open Foundation of Key Laboratory of Underw ater Acoustic Signal Processing(No.UASP1301)the Prospective Joint Research Project of Jiangsu province(No.BY2014127-01)
文摘To take into account the influence of uncetainties on the dynamic response of the vibro-acousitc structure, a hybrid modeling technique combining the finite element method(FE)and the statistic energy analysis(SEA) is proposed to analyze vibro-acoustics responses with uncertainties at middle frequencies. The mid-frequency dynamic response of the framework-plate structure with uncertainties is studied based on the hybrid FE-SEA method and the Monte Carlo(MC)simulation is performed so as to provide a benchmark comparison with the hybrid method. The energy response of the framework-plate structure matches well with the MC simulation results, which validates the effectiveness of the hybrid FE-SEA method considering both the complexity of the vibro-acoustic structure and the uncertainties in mid-frequency vibro-acousitc analysis. Based on the hybrid method, a vibroacoustic model of a construction machinery cab with random properties is established, and the excitations of the model are measured by experiments. The responses of the sound pressure level of the cab and the vibration power spectrum density of the front windscreen are calculated and compared with those of the experiment. At middle frequencies, the results have a good consistency with the tests and the prediction error is less than 3. 5dB.
文摘In order to improve the mass efficiency of an automotive soundproof package, it is important to predict the middle to high frequency range of noise and vibration during vehicle operation. A hybrid method of experimental and analytical SEA (statistical energy analysis) has been applied for the prediction of air-borne noise. However, for predicting structure-borne noise, there are no definitive simulation methods that can address the soundproof specifications in an actual vehicle. Thus, in this paper, a FEM (finite element method)'SEA hybrid method is used. The FEM'SEA hybrid method predicts structure-borne noise in the middle to high frequency range. First, we explain the basic concept of the FEM'SEA hybrid method; Second, we describe our experiment to verify the analytical results of the FEM'SEA hybrid method; Third, we provide the details of the FEM model versus the FEM'SEA hybrid model; Finally, we verify the validity and availability of the FEM'SEA hybrid method through comparisons of the FEM analysis results, FEM-SEA analysis results and measured results.
基金Project supported by the National Natural Science Foundation of China (Nos. 12272089 and U1908217)the Fundamental Research Funds for the Central Universities of China (Nos. N2224001-4 and N2003013)the Basic and Applied Basic Research Foundation of Guangdong Province of China (No. 2020B1515120015)。
文摘The similitude theory helps to understand the physical behaviors of large structures through scaled models. Several papers have studied the similitude of shock issues. However, the dynamic similitude for shock responses of coupled structures is rarely incorporated in open studies. In this paper, scaling laws are derived for the shock responses and spectra of coupled structures. In the presented scaling laws, the geometric distortion and energy loss are considered. The ability of the proposed scaling laws is demonstrated in the simulation and experimental cases. In both cases, the similitude prediction for the prototype's time-domain waveform and spectrum is conducted with the scaled model and scaling laws. The simulation and experimental cases indicate that the predicted shock responses and spectra agree well with those of the prototype, which verifies the proposed scaling laws for predicting shock responses.
文摘The transmission of transverse vibrational energy of a vertically rigid beam plate coupled structure is analyzed to get the theoretical results of coupling loss factor(CLF), a very important parameter in statistical energy analysis(SEA). The modal analysis method is used to discuss the vibration energy of the typical model, as well as the power flow between the two subsystems. Furthermore, the resolution to the coupling loss factor is also derived and compared with the measured values. The analytical results of the coupling loss factor agree with the measured ones fully, this new resolution is significant for the application of SEA.
文摘The acoustic behavior of double-walled laminated composite panels consisting of two porous and air gap middle layers is studied within the classical laminated plate theory (CLPT). Thus, viscous and inertia coupling in a dynamic equation, as well as stress transfer, thermal and elastic coupling of porous material ave based on the Biot theory. In addition, the wave equations are extracted according to the vibration equation of composite layers. The transmission loss (TL) of the structure is then calculated by solving these equations simultaneously. Statistical energy analysis (SEA) is developed to divide the structure into specific subsystems, and power transmission is extracted with balancing power flow equations of the subsystems. Comparison between the present work and the results reported elsewhere shows excellent agreement. The results also indicate that, although favorable enhancement is seen in noise control particularly at high frequencies, the corresponding parameters associated with fluid phase and solid phase of the porous layer are important on TL according to the boundary condition interfaces. Finally, the influence of composite material and stacking sequence on power transmission is discussed.