Spatially-resolved crystal spectrometers with a high spectral resolution are developed to diagnose K-shell x-ray radiation from Z-pinch plasmas. These diagnostic apparatuses are successfully applied to aluminum wire a...Spatially-resolved crystal spectrometers with a high spectral resolution are developed to diagnose K-shell x-ray radiation from Z-pinch plasmas. These diagnostic apparatuses are successfully applied to aluminum wire array Z-pinch experiments on QiangGuang-I facility, a driver with a pulsed current up to about 1.5 MA in 80 ns. Time-integrated experimental results show that the K-shell x-ray emission lines of aluminum Z-pinch plasmas are dominated by line emissions from helium-like ionisation state. Bright spots that might have higher electron temperature or density are produced randomly in location and size along the z-axis during implosions. According to the experimental data, the electron temperature and the ion density are estimated to be between 250 eV and 310 eV, and between 7.0× 10^19 cm-3 and 4.0 ×10^19 cm-3 respectively, while the ion temperature is inferred to be about 10.2 keV, which is much higher than the electron temperature.展开更多
Brain oscillations are vital to cognitive functions,while disrupted oscillatory activity is linked to various brain disorders.Although high-frequency neural oscillations(>1 Hz)have been extensively studied in cogni...Brain oscillations are vital to cognitive functions,while disrupted oscillatory activity is linked to various brain disorders.Although high-frequency neural oscillations(>1 Hz)have been extensively studied in cognition,the neural mechanisms underlying low-frequency hemodynamic oscillations(LFHO)<1 Hz have not yet been fully explored.One way to examine oscillatory neural dynamics is to use a facial expression(FE)paradigm to induce steady-state visual evoked potentials(SSVEPs),which has been used in electroencephalography studies of high-frequency brain oscillation activity.In this study,LFHO during SSVEP-inducing periodic flickering stimuli presentation were inspected using functional near-infrared spectroscopy(fNIRS),in which hemodynamic responses in the prefrontal cortex were recorded while participants were passively viewing dynamic FEs flickering at 0.2 Hz.The fast Fourier analysis results demonstrated that the power exhibited monochronic peaks at 0.2 Hz across all channels,indicating that the periodic events successfully elicited LFHO in the prefrontal cortex.More importantly,measurement of LFHO can effectively distinguish the brain activation difference between different cognitive conditions,with happy FE presentation showing greater LFHO power than neutral FE presentation.These results demonstrate that stimuli flashing at a given frequency can induce LFHO in the prefrontal cortex,which provides new insights into the cognitive mechanisms involved in slow oscillation.展开更多
In the present study, a fast chemical shift imaging (CSI) method has been used to dynamically monitor the formation of oil-water emulsions and the phase separation process of the emulsion phase from the excessive wa...In the present study, a fast chemical shift imaging (CSI) method has been used to dynamically monitor the formation of oil-water emulsions and the phase separation process of the emulsion phase from the excessive water or oil phase on the molecular level. With signals sampled from series of small voxels simultaneously within a few seconds, high-resolution one-dimensional (1D) 1H nuclear magnetic resonance (NMR) spectra from different spatial positions for inhomogeneous emulsion systems induced by susceptibility differences among components can be obtained independently. On the basis of integrals from these ~H NMR spectra, profiles obtained explicitly demonstrate the spatial and temporal variations of oil concentrations. Furthermore, the phase separation time and the length of the oil-water emulsion phase are determined. In addition, effects of oil types and proportions of the emulsifier on the emulsification states are also inspected. Experimental results indicate that 1D PHASICS (Partial Homogeneity Assisted Inhomogeneity Correction Spectroscopy) provides a helpful and promising alternative to research on dynamic processes or chemical reactions.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 10635050)
文摘Spatially-resolved crystal spectrometers with a high spectral resolution are developed to diagnose K-shell x-ray radiation from Z-pinch plasmas. These diagnostic apparatuses are successfully applied to aluminum wire array Z-pinch experiments on QiangGuang-I facility, a driver with a pulsed current up to about 1.5 MA in 80 ns. Time-integrated experimental results show that the K-shell x-ray emission lines of aluminum Z-pinch plasmas are dominated by line emissions from helium-like ionisation state. Bright spots that might have higher electron temperature or density are produced randomly in location and size along the z-axis during implosions. According to the experimental data, the electron temperature and the ion density are estimated to be between 250 eV and 310 eV, and between 7.0× 10^19 cm-3 and 4.0 ×10^19 cm-3 respectively, while the ion temperature is inferred to be about 10.2 keV, which is much higher than the electron temperature.
基金University of Macao,Nos.MYRG2019-00082-FHS and MYRG2018-00081-FHSMacao Science and Technology Development Fund,No.FDCT 025/2015/A1 and FDCT 0011/2018/A1.
文摘Brain oscillations are vital to cognitive functions,while disrupted oscillatory activity is linked to various brain disorders.Although high-frequency neural oscillations(>1 Hz)have been extensively studied in cognition,the neural mechanisms underlying low-frequency hemodynamic oscillations(LFHO)<1 Hz have not yet been fully explored.One way to examine oscillatory neural dynamics is to use a facial expression(FE)paradigm to induce steady-state visual evoked potentials(SSVEPs),which has been used in electroencephalography studies of high-frequency brain oscillation activity.In this study,LFHO during SSVEP-inducing periodic flickering stimuli presentation were inspected using functional near-infrared spectroscopy(fNIRS),in which hemodynamic responses in the prefrontal cortex were recorded while participants were passively viewing dynamic FEs flickering at 0.2 Hz.The fast Fourier analysis results demonstrated that the power exhibited monochronic peaks at 0.2 Hz across all channels,indicating that the periodic events successfully elicited LFHO in the prefrontal cortex.More importantly,measurement of LFHO can effectively distinguish the brain activation difference between different cognitive conditions,with happy FE presentation showing greater LFHO power than neutral FE presentation.These results demonstrate that stimuli flashing at a given frequency can induce LFHO in the prefrontal cortex,which provides new insights into the cognitive mechanisms involved in slow oscillation.
基金Project supported by the Natural Science Foundation of Fujian Province,China(Grant Nos.2016J01078 and 2017J05011)the Fundamental Research Funds for the Central Universities of China(Grant Nos.20720160125 and 20720150018)the National Natural Science Foundation of China(Grant No.11705068)
文摘In the present study, a fast chemical shift imaging (CSI) method has been used to dynamically monitor the formation of oil-water emulsions and the phase separation process of the emulsion phase from the excessive water or oil phase on the molecular level. With signals sampled from series of small voxels simultaneously within a few seconds, high-resolution one-dimensional (1D) 1H nuclear magnetic resonance (NMR) spectra from different spatial positions for inhomogeneous emulsion systems induced by susceptibility differences among components can be obtained independently. On the basis of integrals from these ~H NMR spectra, profiles obtained explicitly demonstrate the spatial and temporal variations of oil concentrations. Furthermore, the phase separation time and the length of the oil-water emulsion phase are determined. In addition, effects of oil types and proportions of the emulsifier on the emulsification states are also inspected. Experimental results indicate that 1D PHASICS (Partial Homogeneity Assisted Inhomogeneity Correction Spectroscopy) provides a helpful and promising alternative to research on dynamic processes or chemical reactions.