The convergence to steady state solutions of the Euler equations for weighted compact nonlinear schemes (WCNS) [Deng X. and Zhang H. (2000), J. Comput. Phys. 165, 22–44 and Zhang S., Jiang S. and Shu C.-W. (2008...The convergence to steady state solutions of the Euler equations for weighted compact nonlinear schemes (WCNS) [Deng X. and Zhang H. (2000), J. Comput. Phys. 165, 22–44 and Zhang S., Jiang S. and Shu C.-W. (2008), J. Comput. Phys. 227, 7294-7321] is studied through numerical tests. Like most other shock capturing schemes, WCNS also suffers from the problem that the residue can not settle down to machine zero for the computation of the steady state solution which contains shock waves but hangs at the truncation error level. In this paper, the techniques studied in [Zhang S. and Shu. C.-W. (2007), J. Sci. Comput. 31, 273–305 and Zhang S., Jiang S and Shu. C.-W. (2011), J. Sci. Comput. 47, 216–238], to improve the convergence to steady state solutions for WENO schemes, are generalized to the WCNS. Detailed numerical studies in one and two dimensional cases are performed. Numerical tests demonstrate the effectiveness of these techniques when applied to WCNS. The residue of various order WCNS can settle down to machine zero for typical cases while the small post-shock oscillations can be removed.展开更多
Weighted essentially non-oscillatory(WENO)schemes are a class of high-order shock capturing schemes which have been designed and applied to solve many fluid dynamics problems to study the detailed flow structures and ...Weighted essentially non-oscillatory(WENO)schemes are a class of high-order shock capturing schemes which have been designed and applied to solve many fluid dynamics problems to study the detailed flow structures and their evolutions.However,like many other high-order shock capturing schemes,WENO schemes also suffer from the problem that it can not easily converge to a steady state solution if there is a strong shock wave.This is a long-standing difficulty for high-order shock capturing schemes.In recent years,this non-convergence problem has been studied extensively for WENO schemes.Numerical tests show that the key reason of the non-convergence to steady state is the slight post shock oscillations,which are at the small local truncation error level but prevent the residue to settle down to machine zero.Several strategies have been proposed to reduce these slight post shock oscillations,including the design of new smoothness indicators for the fifth-order WENO scheme,the development of a high-order weighted interpolation in the procedure of the local characteristic projection for WENO schemes of higher order of accuracy,and the design of a new type of WENO schemes.With these strategies,the convergence to steady states is improved significantly.Moreover,the strategies are applicable to other types of weighted schemes.In this paper,we give a brief review on the topic of convergence to steady state solutions for WENO schemes applied to Euler equations.展开更多
In this article, we consider positive steady state solutions and dynamics for a spatially heterogeneous predator-prey system with modified Leslie-Gower and Holling-Type II schemes. The heterogeneity here is created by...In this article, we consider positive steady state solutions and dynamics for a spatially heterogeneous predator-prey system with modified Leslie-Gower and Holling-Type II schemes. The heterogeneity here is created by the degeneracy of the intra-specific pressures for the prey. By the bifurcation method, the degree theory, and a priori estimates, we discuss the existence and multiplicity of positive steady states. Moreover, by the comparison argument, we also discuss the dynamical behavior for the diffusive predator-prey system.展开更多
The steady state solution of long slender marine structures simply indicates the steady motion response to the excitation at top of the structure.It is very crucial especially for deep towing systems to find out how t...The steady state solution of long slender marine structures simply indicates the steady motion response to the excitation at top of the structure.It is very crucial especially for deep towing systems to find out how the towed body and towing cable work under certain towing speed.This paper has presented a direct algorithm using Runge-Kutta method for steady-state solution of long slender cylindrical structures and compared to the time iteration calculation;the direct algorithm spends much less time than the time-iteration scheme.Therefore, the direct algorithm proposed in this paper is quite efficient in providing credible reference for marine engineering applications.展开更多
In this paper, we study a single server queueing system with Coxian-2 service. In Particular, we study M/C-2/M/1 queue with Coxian-2 service and exponential vacation. We assume that units (customers) arrive at t...In this paper, we study a single server queueing system with Coxian-2 service. In Particular, we study M/C-2/M/1 queue with Coxian-2 service and exponential vacation. We assume that units (customers) arrive at the system one by one in a Poisson process and the server provides one-by-one service based on first in first out (FIFO) rule. We obtained the steady state queue size distributions in terms of the probability generating functions, the average number of customers and their average waiting time in the system as well as in the queue.展开更多
This paper considers the relationship between the time dependent solutions and the steady state solutions of semiconductor equations under the thermal equilibrium conditions. The asymptotic behavior of the time depend...This paper considers the relationship between the time dependent solutions and the steady state solutions of semiconductor equations under the thermal equilibrium conditions. The asymptotic behavior of the time dependent solution is obtained.展开更多
The paper presents a novel pressure-corrected formulation of the immersed boundary method(IBM)for the simulation of fully compressible non-Boussinesq natural convection flows.The formulation incorporated into the pres...The paper presents a novel pressure-corrected formulation of the immersed boundary method(IBM)for the simulation of fully compressible non-Boussinesq natural convection flows.The formulation incorporated into the pressure-based fractional step approach facilitates simulation of the flows in the presence of an immersed body characterized by a complex geometry.Here,we first present extensive grid independence and verification studies addressing incompressible pressure-driven flow in an extended channel and non-Boussinesq natural convection flow in a differentially heated cavity.Next,the steady-state non-Boussinesq natural convection flow developing in the presence of hot cylinders of various diameters placed within a cold square cavity is thoroughly investigated.The obtained results are presented and analyzed in terms of the spatial distribution of path lines and temperature fields and of heat flux values typical of the hot cylinder and the cold cavity surfaces.Flow characteristics of multiple steady-state solutions discovered for several configurations are presented and discussed in detail.展开更多
基金Supported by the National Natural Science Foundation of China(Grants11172317,91016001)973 Program 2009CB724104,Supported by 973 program 2009CB723800+1 种基金Supported by AFOSR Grant FA9550-09-1-0126NSF grants DMS-0809086 and DMS-1112700
文摘The convergence to steady state solutions of the Euler equations for weighted compact nonlinear schemes (WCNS) [Deng X. and Zhang H. (2000), J. Comput. Phys. 165, 22–44 and Zhang S., Jiang S. and Shu C.-W. (2008), J. Comput. Phys. 227, 7294-7321] is studied through numerical tests. Like most other shock capturing schemes, WCNS also suffers from the problem that the residue can not settle down to machine zero for the computation of the steady state solution which contains shock waves but hangs at the truncation error level. In this paper, the techniques studied in [Zhang S. and Shu. C.-W. (2007), J. Sci. Comput. 31, 273–305 and Zhang S., Jiang S and Shu. C.-W. (2011), J. Sci. Comput. 47, 216–238], to improve the convergence to steady state solutions for WENO schemes, are generalized to the WCNS. Detailed numerical studies in one and two dimensional cases are performed. Numerical tests demonstrate the effectiveness of these techniques when applied to WCNS. The residue of various order WCNS can settle down to machine zero for typical cases while the small post-shock oscillations can be removed.
基金The work of the first author was supported by NSFC grant 11732016The research of the second author was supported by NSFC grant 11872210The research of the third author was supported by NSF grant DMS-1719410.
文摘Weighted essentially non-oscillatory(WENO)schemes are a class of high-order shock capturing schemes which have been designed and applied to solve many fluid dynamics problems to study the detailed flow structures and their evolutions.However,like many other high-order shock capturing schemes,WENO schemes also suffer from the problem that it can not easily converge to a steady state solution if there is a strong shock wave.This is a long-standing difficulty for high-order shock capturing schemes.In recent years,this non-convergence problem has been studied extensively for WENO schemes.Numerical tests show that the key reason of the non-convergence to steady state is the slight post shock oscillations,which are at the small local truncation error level but prevent the residue to settle down to machine zero.Several strategies have been proposed to reduce these slight post shock oscillations,including the design of new smoothness indicators for the fifth-order WENO scheme,the development of a high-order weighted interpolation in the procedure of the local characteristic projection for WENO schemes of higher order of accuracy,and the design of a new type of WENO schemes.With these strategies,the convergence to steady states is improved significantly.Moreover,the strategies are applicable to other types of weighted schemes.In this paper,we give a brief review on the topic of convergence to steady state solutions for WENO schemes applied to Euler equations.
基金supported by the National Natural Science Foundation of China(11361053,11201204,11471148,11471330,145RJZA112)
文摘In this article, we consider positive steady state solutions and dynamics for a spatially heterogeneous predator-prey system with modified Leslie-Gower and Holling-Type II schemes. The heterogeneity here is created by the degeneracy of the intra-specific pressures for the prey. By the bifurcation method, the degree theory, and a priori estimates, we discuss the existence and multiplicity of positive steady states. Moreover, by the comparison argument, we also discuss the dynamical behavior for the diffusive predator-prey system.
基金the National Natural Science Foundation of China(Nos.51009092 and 50909061)the Doctoral Foundation of Education Ministry of China (No.20090073120013)the National High Technology Research and Development Program (863) of China (No.2008AA092301-1)
文摘The steady state solution of long slender marine structures simply indicates the steady motion response to the excitation at top of the structure.It is very crucial especially for deep towing systems to find out how the towed body and towing cable work under certain towing speed.This paper has presented a direct algorithm using Runge-Kutta method for steady-state solution of long slender cylindrical structures and compared to the time iteration calculation;the direct algorithm spends much less time than the time-iteration scheme.Therefore, the direct algorithm proposed in this paper is quite efficient in providing credible reference for marine engineering applications.
文摘In this paper, we study a single server queueing system with Coxian-2 service. In Particular, we study M/C-2/M/1 queue with Coxian-2 service and exponential vacation. We assume that units (customers) arrive at the system one by one in a Poisson process and the server provides one-by-one service based on first in first out (FIFO) rule. We obtained the steady state queue size distributions in terms of the probability generating functions, the average number of customers and their average waiting time in the system as well as in the queue.
文摘This paper considers the relationship between the time dependent solutions and the steady state solutions of semiconductor equations under the thermal equilibrium conditions. The asymptotic behavior of the time dependent solution is obtained.
基金financial support for this work(grant 218-11-038).
文摘The paper presents a novel pressure-corrected formulation of the immersed boundary method(IBM)for the simulation of fully compressible non-Boussinesq natural convection flows.The formulation incorporated into the pressure-based fractional step approach facilitates simulation of the flows in the presence of an immersed body characterized by a complex geometry.Here,we first present extensive grid independence and verification studies addressing incompressible pressure-driven flow in an extended channel and non-Boussinesq natural convection flow in a differentially heated cavity.Next,the steady-state non-Boussinesq natural convection flow developing in the presence of hot cylinders of various diameters placed within a cold square cavity is thoroughly investigated.The obtained results are presented and analyzed in terms of the spatial distribution of path lines and temperature fields and of heat flux values typical of the hot cylinder and the cold cavity surfaces.Flow characteristics of multiple steady-state solutions discovered for several configurations are presented and discussed in detail.