Steam generator tube rupture(SGTR) accident is an important scenario needed to be considered in the safety analysis of lead-based fast reactors. When the steam generator tube breaks close to the main pump, water vapor...Steam generator tube rupture(SGTR) accident is an important scenario needed to be considered in the safety analysis of lead-based fast reactors. When the steam generator tube breaks close to the main pump, water vapor will enter the reactor core, resulting in a two-phase flow of heavy liquid metal and water vapor in fuel assemblies. The thermal-hydraulic problems caused by the SGTR accident may seriously threaten reactor core's safety performance. In this paper, the open-source CFD calculation software OpenFOAM was used to encapsulate the improved Euler method into the self-developed solver LBEsteamEulerFoam. By changing different heating boundary conditions and inlet coolant types, the two-phase flow in the fuel assembly with different inlet gas content was simulated under various accident conditions. The calculation results show that the water vapor may accumulate in edge and corner channels. With the increase in inlet water vapor content, outlet coolant velocity increases gradually. When the inlet water vapor content is more than 15%, the outlet coolant temperature rises sharply with strong temperature fluctuation. When the inlet water vapor content is in the range of 5–20%, the upper part of the fuel assembly will gradually accumulate to form large bubbles. Compared with the VOF method, Euler method has higher computational efficiency. However, Euler method may cause an underestimation of the void fraction, so it still needs to be calibrated with future experimental data of the two-phase flow in fuel assembly.展开更多
This paper assessed the benefit of the in-situ pressure test to support steam generator tube integrity assessment and reviewed a conservatism of currently applied structural integrity assessment methodology against de...This paper assessed the benefit of the in-situ pressure test to support steam generator tube integrity assessment and reviewed a conservatism of currently applied structural integrity assessment methodology against defected tubes. According to the steam generator program requirement, condition monitoring assessment was performed to the all detected flaws. For condition monitoring assessments, the limiting structural integrity requirement should be demonstrated for all detected degraded tubes at a probability of at least 0.95 at 50% confidence. Some flaws were slightly exceeded the structural integrity threshold values of the condition monitoring performance limits using analytical method. As a direct evaluation of tube integrity with degraded tubes, in-situ pressure testing performed on some selected flaws and passed all proof and leakage test criteria with no leakage. From this pressure testing, the authors have verified that degraded tubes met a specified value containing a defined safety margins. Also, the authors have confirmed that existing structural assessment methodology has enough margins to retain integrity of steam generator tubes.展开更多
Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown tha...Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown that the dynamics of the synchronous generators can be expressed as a dissipative Hamiltonian system, based on which an adaptive H-infinity controller is then designed for the systems by using the structure properties of dissipative Hamiltonian systems. Simulations show that the controller obtained in this paper is very effective.展开更多
Solar evaporation is recognized as a prospective technique to produce freshwater from non-drinkable water using inexhaustible solar energy.However,it remains a challenge to fabricate low-cost solar evaporators with ob...Solar evaporation is recognized as a prospective technique to produce freshwater from non-drinkable water using inexhaustible solar energy.However,it remains a challenge to fabricate low-cost solar evaporators with obviously reduced water evaporation enthalpy to achieve high evaporation rates.Herein,N,O dual-doped carbon foam(NCF)is fabricated from the lowtemperature carbonization of poly(ethylene terephthalate)(PET)waste by melamine/molten salts at 340℃.During carbonization,melamine reacts with carboxylic acids of PET degradation products to yield a crosslinking network,and then molten salts catalyze the decarboxylation and dehydration to construct a stable framework.Owing to rich N,O-containing groups,3D interconnected pores,super-hydrophilicity,and ultra-low thermal conductivity(0.0599 W m^(−1) K^(−1)),NCF not only achieves high light absorbance(ca.99%)and solar-to-thermal conversion,but also promotes the formation of water cluster to reduce water evaporation enthalpy by ca.37%.Consequently,NCF exhibits a high evaporation rate(2.4 kg m^(−2) h^(−1)),surpassing the-state-of-the-art solar evaporators,and presents good antiacid/basic abilities,long-term salt-resistance,and self-cleaning ability.Importantly,a large-scale NCF-based outdoor solar desalination device is developed to produce freshwater.The daily freshwater production amount per unit area(6.3 kg)meets the two adults’daily water consumption.The trash-to-treasure strategy will give impetus to the development of low-cost,advanced solar evaporators from waste plastics for addressing the global freshwater shortage.展开更多
The water level control system of steam generator in a pressurized water reactor of nuchear power plant plays an important role which effects the water level control of the steam generator are due the reverse dynamics...The water level control system of steam generator in a pressurized water reactor of nuchear power plant plays an important role which effects the water level control of the steam generator are due the reverse dynamics behavior,so the transient analysis of the steam generator should firstly solve their mathematical models.For determination of dynamic behavior and design and testing of the control system, a nonlinear math model is developed using one dimensional conservation equations of mass,momentum and energy of primary and secondary sides of the steam generator. The nonlinear model is verified with standard power plant data available in the references, then the steady states and transient calculations are performed for full power to 5% power reactor operation of the steam generator of Chinese Qinshan Nuclear Power Plant.展开更多
This paper presents a novel method to solve old problem of water level control system of pressurized water reactor (PWR) steam generator (SG) of nuclear power plant (NPP) .The level control system of SG plays an impo...This paper presents a novel method to solve old problem of water level control system of pressurized water reactor (PWR) steam generator (SG) of nuclear power plant (NPP) .The level control system of SG plays an important role which effects the reliablity,safty,cost of SG and its mathematical models have been solved.A model of the conventional controller is presented and the existing problems are discussed. A novel rule based realtime control technique is designed with a computerized water level control (CWLC) system for SG of PWR NPP.The performance of this is evaluated for full power reactor operating conditions by applying different transient conditions of SG′s data of Qinshan Nuclear Power Plant (QNPP).展开更多
GP algorithm of correlation dimension computation is ameliorated which overcomes the shortage of traditional one. Improved process of GP algorithm takes the influence of temporal correlative pairs of points on correla...GP algorithm of correlation dimension computation is ameliorated which overcomes the shortage of traditional one. Improved process of GP algorithm takes the influence of temporal correlative pairs of points on correlation dimension into account and promotes the computational efficiency prominently. Iterative SVD method is applied to remove the influence of noise on the result of correlation dimension. The faults of steam flow turbulence and oil film disturbance which occur in 600 MW Steam Turbine Generator are analyzed and whose correlation dimensions are computed. More distinct quantitative index than FFT is gained to distinguish two faults and it’s of little importance to apply correlation dimension to study the influence of various factors on steam flow turbulence fault for nonexistence of convergent floor in correlation integral curve, which presents a new way to learn the operational function of large capacity steam turbine generator and carry out comprehensive condition monitoring.展开更多
All kinds of reasons are analysed in theory and a fault repository combined with local expert experiences is establishedaccording to the structure and the operation characteristic of steam generator in this paper. At ...All kinds of reasons are analysed in theory and a fault repository combined with local expert experiences is establishedaccording to the structure and the operation characteristic of steam generator in this paper. At the same time, Kohonen algo-rithm is used for fault diagnoses system based on fuzzy neural networks. Fuzzy arithmetic is inducted into neural networks tosolve uncertain diagnosis induced by uncertain knowledge. According to its self-association in the course of default diagnosis. thesystem is provided with non-supervise, self-organizing, self-learning, and has strong cluster ability and fast cluster velocity.展开更多
In Middle East region, where there are plentiful amounts of solar radiation and great desert areas, solar energy can play a potential role in replacing conventional fuel-operated electricity generation methods with a ...In Middle East region, where there are plentiful amounts of solar radiation and great desert areas, solar energy can play a potential role in replacing conventional fuel-operated electricity generation methods with a cost-effective, sustainable solution. This paper presents a feasibility study of a low-cost solar energy steam generator for rural areas electrification. The proposed system is based on the use of trough concentrator which converts solar radiation into thermal energy in its focal line (where a receiver pipe is installed with a fluid flowing in its interior). The aim of the paper is to predict the feasibility and potential for steam generation using a stand-alone solar concentrator with a small dimension for domestic and small-scale electricity generation. The study presented here is based on modelling of the system to determine the points at which the system is expected to produce sufficient steam energy at the tube outlet to drive a steam engine for producing electricity. Results are presented in graphical forms to show the operating points and the effect of changing selected input parameters on the behavior of the system in order to set some limits (boundaries) for such parameters. Results show that among the three input design parameters selected, the tube diameter is the most dominant parameter that influences steam energy, then the tube length and finally the flow rate of the water passing through the tube. The results of this paper can provide a useful guideline for future simulation and/or physical implementation of the system.展开更多
Parallel turbine-driven feedwater pumps are needed when ships travel at high speed. In order to study marine steam generator feedwater control systems which use parallel turbine-driven feed pumps, a mathematical model...Parallel turbine-driven feedwater pumps are needed when ships travel at high speed. In order to study marine steam generator feedwater control systems which use parallel turbine-driven feed pumps, a mathematical model of marine steam generator feedwater control system was developed which includes mathematical models of two steam generators and parallel turbine-driven feed pumps as well as mathematical models of feedwater pipes and feed regulating valves. The operating condition points of the parallel ttu-bine-driven feed pumps were calculated by the Chebyshev curve fit method. A water level controller for the steam generator and a rotary speed controller for the turbine-driven feed pumps were also included in the model. The accuracy of the mathematical models and their controllers was verified by comparing their results with those from a simulator.展开更多
In view of the problem that the breakage size is not enough to analyze the damage of the heat transfer tube of the ship nuclear power steam generator under the condition that the breakage loop cannot be isolated, this...In view of the problem that the breakage size is not enough to analyze the damage of the heat transfer tube of the ship nuclear power steam generator under the condition that the breakage loop cannot be isolated, this paper analyzes the damage safety analysis model based on the MELCOR program, Damage of heat transfer tubes at different break sizes (2 mm and 6 mm) to reactor power, primary loop pressure, regulator water level, core water level, vapor pressure, break flow, fuel element cladding breakage, etc. The influence of the breakage size on the damage effect of the heat transfer tube has improved the analysis and handling capacity of the damage of the heat transfer tube, and improved the reactor accident handling capacity under the condition of the damage of the heat transfer tube.展开更多
The once-through steam generator (OTSG) in concentric annuli tube is a new type of steam generator which applies double side to transfer heat. The heat flux between the water of centric tube, outside annuli tube and t...The once-through steam generator (OTSG) in concentric annuli tube is a new type of steam generator which applies double side to transfer heat. The heat flux between the water of centric tube, outside annuli tube and that of annulus channel is assumed to be equal, and then the steam generator’s model is built by lumped parameters with moving boundary. In the basis of the built model, static and dynamic characteristics are analyzed. The static characteristics are proved by experiment results in a 19-tube once-through steam generator of Babcock & Wilcox. The characteristics that the lengths of three regions (subcooled region, nucleate boiling region, superheat region) change with power can be explained by theory analysis. The dynamic characteristics accord with the heat and hydraulics and the results of analysis according to the mechanism.展开更多
A calculation method of heat transfer area for vertical natural circulated steam generator was introduced. According to the design requirements of steam generator 55/19 of CPR1000, its heat transfer area was calculate...A calculation method of heat transfer area for vertical natural circulated steam generator was introduced. According to the design requirements of steam generator 55/19 of CPR1000, its heat transfer area was calculated based on this method. The results show that the accuracy of partitional and overall calculation method is almost the same, but the result is different when using different calculation models. And the results are compared with the foreign companies for 55/19 steam generator.展开更多
Drum level sloshing is the latest discovery in the application of heat recovery steam generator (HRSG) in combined cycle, and shows certain negative influence on drum level controlling. In order to improve drum level ...Drum level sloshing is the latest discovery in the application of heat recovery steam generator (HRSG) in combined cycle, and shows certain negative influence on drum level controlling. In order to improve drum level controlling, influence factors on the drum level sloshing were investigated. Firstly, drum sub-modules were developed using the method of modularization modeling, and then the model of drum level sloshing was set up as well. Experiments were carried out on the experimental rig, and the model was validated using the obtained experimental results. Dynamic simulation was made based on the model to get a 3-D graph of drum level sloshing, which shows a vivid procedure of drum level sloshing. The effect of feed-water flow rate, main-steam flow rate and heating quantity on the drum level sloshing was analyzed. The simulation results indicate that the signals with frequency higher than 0.05 Hz are that of drum level sloshing, the signals with frequency of 0.0-0.05 Hz are that of drum level trendy and "false water level", and variation of the feed-water flow rates, main-steam flow rates and heating quantities can change the frequency of drum level sloshing, i.e., the frequency of sloshing increases with the increase of feed-water flow rate, or the decrease of the main-steam flow rate and the heating quantity. This research work is fundamental to improve signal-to-noise ratio of drum level signal and precise controlling of drum level.展开更多
To investigate the steady thermal hydraulic characteristics of U-tube steam generator(SG), a 1D simulation code based on the four-equation drift flux model is developed. The U-tube channels presumably consist mainly o...To investigate the steady thermal hydraulic characteristics of U-tube steam generator(SG), a 1D simulation code based on the four-equation drift flux model is developed. The U-tube channels presumably consist mainly of the primary channel, secondary channel, and tube wall. In the sub-cooling regions of the primary and secondary channels, flow is simulated using the single-phase flow model, whereas that in the boiling regions of the secondary channels is simulated using the four-equation drift flux model. The first-order equations of upwind difference are derived based on the staggered grid. Steady-state thermal hydraulic parameters are obtained with a cross-iteration scheme of heat balance and natural circulation requirement. The developed code is applied to analyze the SG behavior of the Qinshan I Nuclear Power Plant under 100%, 75%, 50%, 30%, and 15% power conditions. Analysis results are then compared with the simulation results obtained using RELAP5.展开更多
Because of the practical importance of two-phase instabilities, substantial efforts have been made to date to understand the physical phenomena governing such instabilities and to develop computational tools to model ...Because of the practical importance of two-phase instabilities, substantial efforts have been made to date to understand the physical phenomena governing such instabilities and to develop computational tools to model the dynamics. The purpose of this study is to present a numerical model for the analysis of flow-induced instabilities in forced-convection steam generator. The model is based on the assumption of homogeneous two-phase flow and ther- modynamic equilibrium of the phases. The thermal capacity of the heater wall has been included in the analysis. The model is used to analyze the flow instabilities in the steam generator and to study the effects of system pressure, mass flux, inlet temperature and inlet/outlet restriction, gap size, the ratio of do / di, and the ratio of qi / qo on the system be- havior.展开更多
Harvesting solar energy in an effective manner for steam and electricity generation is a promising technique to simultaneously cope with the energy and water crises.However,the construction of efficient and easy scale...Harvesting solar energy in an effective manner for steam and electricity generation is a promising technique to simultaneously cope with the energy and water crises.However,the construction of efficient and easy scale-up photothermal materials for steam and electricity cogeneration remains challenging.Herein,we report a facile and cost-effective strategy to prepare MnO_(2)-decorated cotton cloth(MCx).The wide adsorption spectrum and excellent photothermal conversion ability of the in situ-formed MnO_(2)nanoparticles make the MCx to be advanced photothermal materials.Consequently,the hybrid device integrated with MCx as the photothermal layer and the thermoelectric(TE)module for electricity power conversion exhibits an extremely high evaporation rate of 2.24 kg m^(−2)h^(−1)under 1 kW m^(−2)irradiation,which is ranked among the most powerful solar evaporators.More importantly,during solar evaporation,the hybrid device produces an open-circuit voltage of 0.3 V and a power output of 1.6 W m^(−2)under 3 Sun irradiation,and outperforms most of the previously reported solar-driven electricity generation devices.Therefore,the integrated device with synergistic solar-thermal utilization opens up a green way toward simultaneous solar vapor and electric power generation in remote and resource-constrained areas.展开更多
The decommissioning of nuclear power plants is in the Slovak Republic an actual issue. In 2015 started the second decommissioning stage of nuclear power plant V1 in Jaslovské Bohunice. This stage involves the dis...The decommissioning of nuclear power plants is in the Slovak Republic an actual issue. In 2015 started the second decommissioning stage of nuclear power plant V1 in Jaslovské Bohunice. This stage involves the dismantling and segmentation of activated (reactor pressure vessel, reactor internals) and contaminated parts (steam generators, pressurizer). From this reason it is necessary to investigate the radiation situation in the vicinity of the component to be cut. The presented results show that during remote dismantling the exposure is small (compared with the fragmentation tasks). Moreover, when the pre-dismantling decontamination with decontamination factor of 100 is applied, the total collective effective dose is below the yearly limit of 20 mSv for workers.展开更多
基金supported partly by the Ministry of Science and Technology of the People's Republic of China (No. 2020YFB1902100)the Shanghai Municipal Commission of Economy and Informatization (No. GYQJ-2018-2-02)。
文摘Steam generator tube rupture(SGTR) accident is an important scenario needed to be considered in the safety analysis of lead-based fast reactors. When the steam generator tube breaks close to the main pump, water vapor will enter the reactor core, resulting in a two-phase flow of heavy liquid metal and water vapor in fuel assemblies. The thermal-hydraulic problems caused by the SGTR accident may seriously threaten reactor core's safety performance. In this paper, the open-source CFD calculation software OpenFOAM was used to encapsulate the improved Euler method into the self-developed solver LBEsteamEulerFoam. By changing different heating boundary conditions and inlet coolant types, the two-phase flow in the fuel assembly with different inlet gas content was simulated under various accident conditions. The calculation results show that the water vapor may accumulate in edge and corner channels. With the increase in inlet water vapor content, outlet coolant velocity increases gradually. When the inlet water vapor content is more than 15%, the outlet coolant temperature rises sharply with strong temperature fluctuation. When the inlet water vapor content is in the range of 5–20%, the upper part of the fuel assembly will gradually accumulate to form large bubbles. Compared with the VOF method, Euler method has higher computational efficiency. However, Euler method may cause an underestimation of the void fraction, so it still needs to be calibrated with future experimental data of the two-phase flow in fuel assembly.
文摘This paper assessed the benefit of the in-situ pressure test to support steam generator tube integrity assessment and reviewed a conservatism of currently applied structural integrity assessment methodology against defected tubes. According to the steam generator program requirement, condition monitoring assessment was performed to the all detected flaws. For condition monitoring assessments, the limiting structural integrity requirement should be demonstrated for all detected degraded tubes at a probability of at least 0.95 at 50% confidence. Some flaws were slightly exceeded the structural integrity threshold values of the condition monitoring performance limits using analytical method. As a direct evaluation of tube integrity with degraded tubes, in-situ pressure testing performed on some selected flaws and passed all proof and leakage test criteria with no leakage. From this pressure testing, the authors have verified that degraded tubes met a specified value containing a defined safety margins. Also, the authors have confirmed that existing structural assessment methodology has enough margins to retain integrity of steam generator tubes.
基金This work was supported by the National Natural Science Foundation of China (No.G60474001) the Research Fund for Doctoral Program of Chinese Higher Education (No.G20040422059).
文摘Based on Hamiltonian formulation, this paper proposes a design approach to nonlinear feedback excitation control of synchronous generators with steam valve control, disturbances and unknown parameters. It is shown that the dynamics of the synchronous generators can be expressed as a dissipative Hamiltonian system, based on which an adaptive H-infinity controller is then designed for the systems by using the structure properties of dissipative Hamiltonian systems. Simulations show that the controller obtained in this paper is very effective.
基金supported by National Natural Science Foundation of China(No.51903099 and 51991353)100 Talents Program of Hubei Provincial Government,Huazhong University of Science and Technology(No.3004013134 and 2021XXJS036)+1 种基金the Innovation and Talent Recruitment Base of New Energy Chemistry and Device(No.B21003)the Open Research Fund of State Key Laboratory of Polymer Physics and Chemistry,Changchun Institute of Applied Chemistry,Chinese Academy of Sciences.
文摘Solar evaporation is recognized as a prospective technique to produce freshwater from non-drinkable water using inexhaustible solar energy.However,it remains a challenge to fabricate low-cost solar evaporators with obviously reduced water evaporation enthalpy to achieve high evaporation rates.Herein,N,O dual-doped carbon foam(NCF)is fabricated from the lowtemperature carbonization of poly(ethylene terephthalate)(PET)waste by melamine/molten salts at 340℃.During carbonization,melamine reacts with carboxylic acids of PET degradation products to yield a crosslinking network,and then molten salts catalyze the decarboxylation and dehydration to construct a stable framework.Owing to rich N,O-containing groups,3D interconnected pores,super-hydrophilicity,and ultra-low thermal conductivity(0.0599 W m^(−1) K^(−1)),NCF not only achieves high light absorbance(ca.99%)and solar-to-thermal conversion,but also promotes the formation of water cluster to reduce water evaporation enthalpy by ca.37%.Consequently,NCF exhibits a high evaporation rate(2.4 kg m^(−2) h^(−1)),surpassing the-state-of-the-art solar evaporators,and presents good antiacid/basic abilities,long-term salt-resistance,and self-cleaning ability.Importantly,a large-scale NCF-based outdoor solar desalination device is developed to produce freshwater.The daily freshwater production amount per unit area(6.3 kg)meets the two adults’daily water consumption.The trash-to-treasure strategy will give impetus to the development of low-cost,advanced solar evaporators from waste plastics for addressing the global freshwater shortage.
文摘The water level control system of steam generator in a pressurized water reactor of nuchear power plant plays an important role which effects the water level control of the steam generator are due the reverse dynamics behavior,so the transient analysis of the steam generator should firstly solve their mathematical models.For determination of dynamic behavior and design and testing of the control system, a nonlinear math model is developed using one dimensional conservation equations of mass,momentum and energy of primary and secondary sides of the steam generator. The nonlinear model is verified with standard power plant data available in the references, then the steady states and transient calculations are performed for full power to 5% power reactor operation of the steam generator of Chinese Qinshan Nuclear Power Plant.
文摘This paper presents a novel method to solve old problem of water level control system of pressurized water reactor (PWR) steam generator (SG) of nuclear power plant (NPP) .The level control system of SG plays an important role which effects the reliablity,safty,cost of SG and its mathematical models have been solved.A model of the conventional controller is presented and the existing problems are discussed. A novel rule based realtime control technique is designed with a computerized water level control (CWLC) system for SG of PWR NPP.The performance of this is evaluated for full power reactor operating conditions by applying different transient conditions of SG′s data of Qinshan Nuclear Power Plant (QNPP).
文摘GP algorithm of correlation dimension computation is ameliorated which overcomes the shortage of traditional one. Improved process of GP algorithm takes the influence of temporal correlative pairs of points on correlation dimension into account and promotes the computational efficiency prominently. Iterative SVD method is applied to remove the influence of noise on the result of correlation dimension. The faults of steam flow turbulence and oil film disturbance which occur in 600 MW Steam Turbine Generator are analyzed and whose correlation dimensions are computed. More distinct quantitative index than FFT is gained to distinguish two faults and it’s of little importance to apply correlation dimension to study the influence of various factors on steam flow turbulence fault for nonexistence of convergent floor in correlation integral curve, which presents a new way to learn the operational function of large capacity steam turbine generator and carry out comprehensive condition monitoring.
文摘All kinds of reasons are analysed in theory and a fault repository combined with local expert experiences is establishedaccording to the structure and the operation characteristic of steam generator in this paper. At the same time, Kohonen algo-rithm is used for fault diagnoses system based on fuzzy neural networks. Fuzzy arithmetic is inducted into neural networks tosolve uncertain diagnosis induced by uncertain knowledge. According to its self-association in the course of default diagnosis. thesystem is provided with non-supervise, self-organizing, self-learning, and has strong cluster ability and fast cluster velocity.
文摘In Middle East region, where there are plentiful amounts of solar radiation and great desert areas, solar energy can play a potential role in replacing conventional fuel-operated electricity generation methods with a cost-effective, sustainable solution. This paper presents a feasibility study of a low-cost solar energy steam generator for rural areas electrification. The proposed system is based on the use of trough concentrator which converts solar radiation into thermal energy in its focal line (where a receiver pipe is installed with a fluid flowing in its interior). The aim of the paper is to predict the feasibility and potential for steam generation using a stand-alone solar concentrator with a small dimension for domestic and small-scale electricity generation. The study presented here is based on modelling of the system to determine the points at which the system is expected to produce sufficient steam energy at the tube outlet to drive a steam engine for producing electricity. Results are presented in graphical forms to show the operating points and the effect of changing selected input parameters on the behavior of the system in order to set some limits (boundaries) for such parameters. Results show that among the three input design parameters selected, the tube diameter is the most dominant parameter that influences steam energy, then the tube length and finally the flow rate of the water passing through the tube. The results of this paper can provide a useful guideline for future simulation and/or physical implementation of the system.
文摘Parallel turbine-driven feedwater pumps are needed when ships travel at high speed. In order to study marine steam generator feedwater control systems which use parallel turbine-driven feed pumps, a mathematical model of marine steam generator feedwater control system was developed which includes mathematical models of two steam generators and parallel turbine-driven feed pumps as well as mathematical models of feedwater pipes and feed regulating valves. The operating condition points of the parallel ttu-bine-driven feed pumps were calculated by the Chebyshev curve fit method. A water level controller for the steam generator and a rotary speed controller for the turbine-driven feed pumps were also included in the model. The accuracy of the mathematical models and their controllers was verified by comparing their results with those from a simulator.
文摘In view of the problem that the breakage size is not enough to analyze the damage of the heat transfer tube of the ship nuclear power steam generator under the condition that the breakage loop cannot be isolated, this paper analyzes the damage safety analysis model based on the MELCOR program, Damage of heat transfer tubes at different break sizes (2 mm and 6 mm) to reactor power, primary loop pressure, regulator water level, core water level, vapor pressure, break flow, fuel element cladding breakage, etc. The influence of the breakage size on the damage effect of the heat transfer tube has improved the analysis and handling capacity of the damage of the heat transfer tube, and improved the reactor accident handling capacity under the condition of the damage of the heat transfer tube.
文摘The once-through steam generator (OTSG) in concentric annuli tube is a new type of steam generator which applies double side to transfer heat. The heat flux between the water of centric tube, outside annuli tube and that of annulus channel is assumed to be equal, and then the steam generator’s model is built by lumped parameters with moving boundary. In the basis of the built model, static and dynamic characteristics are analyzed. The static characteristics are proved by experiment results in a 19-tube once-through steam generator of Babcock & Wilcox. The characteristics that the lengths of three regions (subcooled region, nucleate boiling region, superheat region) change with power can be explained by theory analysis. The dynamic characteristics accord with the heat and hydraulics and the results of analysis according to the mechanism.
文摘A calculation method of heat transfer area for vertical natural circulated steam generator was introduced. According to the design requirements of steam generator 55/19 of CPR1000, its heat transfer area was calculated based on this method. The results show that the accuracy of partitional and overall calculation method is almost the same, but the result is different when using different calculation models. And the results are compared with the foreign companies for 55/19 steam generator.
基金Project(51276023) supported by the National Natural Science Foundation of ChinaProject(09k069) supported by the Open Project Funded by Universities Innovation Platform, Hunan Province, ChinaProject(2011GK311) supported by the Office of Science and Technology of Hunan Province, China
文摘Drum level sloshing is the latest discovery in the application of heat recovery steam generator (HRSG) in combined cycle, and shows certain negative influence on drum level controlling. In order to improve drum level controlling, influence factors on the drum level sloshing were investigated. Firstly, drum sub-modules were developed using the method of modularization modeling, and then the model of drum level sloshing was set up as well. Experiments were carried out on the experimental rig, and the model was validated using the obtained experimental results. Dynamic simulation was made based on the model to get a 3-D graph of drum level sloshing, which shows a vivid procedure of drum level sloshing. The effect of feed-water flow rate, main-steam flow rate and heating quantity on the drum level sloshing was analyzed. The simulation results indicate that the signals with frequency higher than 0.05 Hz are that of drum level sloshing, the signals with frequency of 0.0-0.05 Hz are that of drum level trendy and "false water level", and variation of the feed-water flow rates, main-steam flow rates and heating quantities can change the frequency of drum level sloshing, i.e., the frequency of sloshing increases with the increase of feed-water flow rate, or the decrease of the main-steam flow rate and the heating quantity. This research work is fundamental to improve signal-to-noise ratio of drum level signal and precise controlling of drum level.
基金Supported by the National Natural Science Foundation of China(Nos.51376065 and 51176052)
文摘To investigate the steady thermal hydraulic characteristics of U-tube steam generator(SG), a 1D simulation code based on the four-equation drift flux model is developed. The U-tube channels presumably consist mainly of the primary channel, secondary channel, and tube wall. In the sub-cooling regions of the primary and secondary channels, flow is simulated using the single-phase flow model, whereas that in the boiling regions of the secondary channels is simulated using the four-equation drift flux model. The first-order equations of upwind difference are derived based on the staggered grid. Steady-state thermal hydraulic parameters are obtained with a cross-iteration scheme of heat balance and natural circulation requirement. The developed code is applied to analyze the SG behavior of the Qinshan I Nuclear Power Plant under 100%, 75%, 50%, 30%, and 15% power conditions. Analysis results are then compared with the simulation results obtained using RELAP5.
文摘Because of the practical importance of two-phase instabilities, substantial efforts have been made to date to understand the physical phenomena governing such instabilities and to develop computational tools to model the dynamics. The purpose of this study is to present a numerical model for the analysis of flow-induced instabilities in forced-convection steam generator. The model is based on the assumption of homogeneous two-phase flow and ther- modynamic equilibrium of the phases. The thermal capacity of the heater wall has been included in the analysis. The model is used to analyze the flow instabilities in the steam generator and to study the effects of system pressure, mass flux, inlet temperature and inlet/outlet restriction, gap size, the ratio of do / di, and the ratio of qi / qo on the system be- havior.
基金supported by Huazhong University of Science and Technology(No.2021XXJS036,3004013134)National Natural Science Foundation of China(No.51903099,22102059)+1 种基金the National Key Technology R&D Program of China(No.2020YFB1709301,2020YFB1709304,2021YFC2101705)the Innovation and Talent Recruitment Base of New Energy Chemistry and Device(No.B21003)。
文摘Harvesting solar energy in an effective manner for steam and electricity generation is a promising technique to simultaneously cope with the energy and water crises.However,the construction of efficient and easy scale-up photothermal materials for steam and electricity cogeneration remains challenging.Herein,we report a facile and cost-effective strategy to prepare MnO_(2)-decorated cotton cloth(MCx).The wide adsorption spectrum and excellent photothermal conversion ability of the in situ-formed MnO_(2)nanoparticles make the MCx to be advanced photothermal materials.Consequently,the hybrid device integrated with MCx as the photothermal layer and the thermoelectric(TE)module for electricity power conversion exhibits an extremely high evaporation rate of 2.24 kg m^(−2)h^(−1)under 1 kW m^(−2)irradiation,which is ranked among the most powerful solar evaporators.More importantly,during solar evaporation,the hybrid device produces an open-circuit voltage of 0.3 V and a power output of 1.6 W m^(−2)under 3 Sun irradiation,and outperforms most of the previously reported solar-driven electricity generation devices.Therefore,the integrated device with synergistic solar-thermal utilization opens up a green way toward simultaneous solar vapor and electric power generation in remote and resource-constrained areas.
文摘The decommissioning of nuclear power plants is in the Slovak Republic an actual issue. In 2015 started the second decommissioning stage of nuclear power plant V1 in Jaslovské Bohunice. This stage involves the dismantling and segmentation of activated (reactor pressure vessel, reactor internals) and contaminated parts (steam generators, pressurizer). From this reason it is necessary to investigate the radiation situation in the vicinity of the component to be cut. The presented results show that during remote dismantling the exposure is small (compared with the fragmentation tasks). Moreover, when the pre-dismantling decontamination with decontamination factor of 100 is applied, the total collective effective dose is below the yearly limit of 20 mSv for workers.