A numerical method for determining a transient fluid temperature is presented.The method is formulated to minimize the total time of heating and cooling operation based on the assumption that maximum tensile and compr...A numerical method for determining a transient fluid temperature is presented.The method is formulated to minimize the total time of heating and cooling operation based on the assumption that maximum tensile and compressive total stresses in a solid can not exceed the allowable value during the entire process.The method can be used for any construction element of a simple or complicated geometry.In this method,material properties of solids can be assumed as constant or temperature dependent.The method will be implemented for the heating operation of an outlet header.This construction element is mounted in supercritical power plants.The outlet header is installed in the 460 MW power unit and it is designed for the working pressure of p_w=26.5 MPa and the steam working temperature of T_w=554℃.The results obtained from the proposed method will be compared with the calculations according to TRD 301-German boiler code.展开更多
In a district heating and cooling system, i.e. Beijing combined heating cooling and power (CHCP) system studied here, the high temperature water generated by two cogeneration plants circulates through a network betwee...In a district heating and cooling system, i.e. Beijing combined heating cooling and power (CHCP) system studied here, the high temperature water generated by two cogeneration plants circulates through a network between the plants and heat substations. At heat substations, the supply water of high temperature from the network drives absorption chillers for air-conditioning in summer and meets space heating demands in winter or domestic hot water demands by heat exchangers in the whole year. The parameters, i.e. supply/return water temperatures in the network, have a great impact on primary energy consumption (PEC) of the absorption chillers, circulation pumps and domestic hot water (DHW), which is studied in this paper.展开更多
文摘A numerical method for determining a transient fluid temperature is presented.The method is formulated to minimize the total time of heating and cooling operation based on the assumption that maximum tensile and compressive total stresses in a solid can not exceed the allowable value during the entire process.The method can be used for any construction element of a simple or complicated geometry.In this method,material properties of solids can be assumed as constant or temperature dependent.The method will be implemented for the heating operation of an outlet header.This construction element is mounted in supercritical power plants.The outlet header is installed in the 460 MW power unit and it is designed for the working pressure of p_w=26.5 MPa and the steam working temperature of T_w=554℃.The results obtained from the proposed method will be compared with the calculations according to TRD 301-German boiler code.
文摘In a district heating and cooling system, i.e. Beijing combined heating cooling and power (CHCP) system studied here, the high temperature water generated by two cogeneration plants circulates through a network between the plants and heat substations. At heat substations, the supply water of high temperature from the network drives absorption chillers for air-conditioning in summer and meets space heating demands in winter or domestic hot water demands by heat exchangers in the whole year. The parameters, i.e. supply/return water temperatures in the network, have a great impact on primary energy consumption (PEC) of the absorption chillers, circulation pumps and domestic hot water (DHW), which is studied in this paper.