期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Hybrid pedestrian positioning system using wearable inertial sensors and ultrasonic ranging
1
作者 Lin Qi Yu Liu +2 位作者 Chuanshun Gao Tao Feng Yue Yu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期327-338,共12页
Pedestrian positioning system(PPS)using wearable inertial sensors has wide applications towards various emerging fields such as smart healthcare,emergency rescue,soldier positioning,etc.The performance of traditional ... Pedestrian positioning system(PPS)using wearable inertial sensors has wide applications towards various emerging fields such as smart healthcare,emergency rescue,soldier positioning,etc.The performance of traditional PPS is limited by the cumulative error of inertial sensors,complex motion modes of pedestrians,and the low robustness of the multi-sensor collaboration structure.This paper presents a hybrid pedestrian positioning system using the combination of wearable inertial sensors and ultrasonic ranging(H-PPS).A robust two nodes integration structure is developed to adaptively combine the motion data acquired from the single waist-mounted and foot-mounted node,and enhanced by a novel ellipsoid constraint model.In addition,a deep-learning-based walking speed estimator is proposed by considering all the motion features provided by different nodes,which effectively reduces the cumulative error originating from inertial sensors.Finally,a comprehensive data and model dual-driven model is presented to effectively combine the motion data provided by different sensor nodes and walking speed estimator,and multi-level constraints are extracted to further improve the performance of the overall system.Experimental results indicate that the proposed H-PPS significantly improves the performance of the single PPS and outperforms existing algorithms in accuracy index under complex indoor scenarios. 展开更多
关键词 Pedestrian positioning system Wearable inertial sensors Ultrasonic ranging Deep-learning Data and model dual-driven
下载PDF
A data and physical model dual-driven based trajectory estimator for long-term navigation
2
作者 Tao Feng Yu Liu +2 位作者 Yue Yu Liang Chen Ruizhi Chen 《Defence Technology(防务技术)》 SCIE EI CAS 2024年第10期78-90,共13页
Long-term navigation ability based on consumer-level wearable inertial sensors plays an essential role towards various emerging fields, for instance, smart healthcare, emergency rescue, soldier positioning et al. The ... Long-term navigation ability based on consumer-level wearable inertial sensors plays an essential role towards various emerging fields, for instance, smart healthcare, emergency rescue, soldier positioning et al. The performance of existing long-term navigation algorithm is limited by the cumulative error of inertial sensors, disturbed local magnetic field, and complex motion modes of the pedestrian. This paper develops a robust data and physical model dual-driven based trajectory estimation(DPDD-TE) framework, which can be applied for long-term navigation tasks. A Bi-directional Long Short-Term Memory(Bi-LSTM) based quasi-static magnetic field(QSMF) detection algorithm is developed for extracting useful magnetic observation for heading calibration, and another Bi-LSTM is adopted for walking speed estimation by considering hybrid human motion information under a specific time period. In addition, a data and physical model dual-driven based multi-source fusion model is proposed to integrate basic INS mechanization and multi-level constraint and observations for maintaining accuracy under long-term navigation tasks, and enhanced by the magnetic and trajectory features assisted loop detection algorithm. Real-world experiments indicate that the proposed DPDD-TE outperforms than existing algorithms, and final estimated heading and positioning accuracy indexes reaches 5° and less than 2 m under the time period of 30 min, respectively. 展开更多
关键词 Long-term navigation Wearable inertial sensors Bi-LSTM QSMF Data and physical model dual-driven
下载PDF
A physics-informed data-driven model for landslide susceptibility assessment in the Three Gorges Reservoir area 被引量:4
3
作者 Songlin Liu Luqi Wang +4 位作者 Wengang Zhang Weixin Sun Jie Fu Ting Xiao Zhenwei Dai 《Geoscience Frontiers》 SCIE CAS CSCD 2023年第5期1-16,共16页
Landslide susceptibility mapping is a crucial tool for analyzing geohazards in a region.Recent publications have popularized data-driven models,particularly machine learning-based methods,owing to their strong capabil... Landslide susceptibility mapping is a crucial tool for analyzing geohazards in a region.Recent publications have popularized data-driven models,particularly machine learning-based methods,owing to their strong capability in dealing with complex nonlinear problems.However,a significant proportion of these models have neglected qualitative aspects during analysis,resulting in a lack of interpretability throughout the process and causing inaccuracies in the negative sample extraction.In this study,Scoops 3D was employed as a physics-informed tool to qualitatively assess slope stability in the study area(the Hubei Province section of the Three Gorges Reservoir Area).The non-landslide samples were extracted based on the calculated factor of safety(FS).Subsequently,the random forest algorithm was employed for data-driven landslide susceptibility analysis,with the area under the receiver operating characteristic curve(AUC)serving as the model evaluation index.Compared to the benchmark model(i.e.,the standard method of utilizing the pure random forest algorithm),the proposed method’s AUC value improved by 20.1%,validating the effectiveness of the dual-driven method(physics-informed data-driven). 展开更多
关键词 Machine Learning Physics-informed Negative sample extraction INTERPRETABILITY dual-driven
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部