Nuclear power plants exhibit non-linear and time-variable dynamics.Therefore,designing a control system that sets the reactor power and forces it to follow the desired load is complicated.A supercritical water reactor...Nuclear power plants exhibit non-linear and time-variable dynamics.Therefore,designing a control system that sets the reactor power and forces it to follow the desired load is complicated.A supercritical water reactor(SCWR)is a fourth-generation conceptual reactor.In an SCWR,the non-linear dynamics of the reactor require a controller capable of control-ling the nonlinearities.In this study,a pressure-tube-type SCWR was controlled during reactor power maneuvering with a higher order sliding mode,and the reactor outgoing steam temperature and pressure were controlled simultaneously.In an SCWR,the temperature,pressure,and power must be maintained at a setpoint(desired value)during power maneuvering.Reactor point kinetics equations with three groups of delayed neutrons were used in the simulation.Higher-order and classic sliding mode controllers were separately manufactured to control the plant and were compared with the PI controllers speci-fied in previous studies.The controlled parameters were reactor power,steam temperature,and pressure.Notably,for these parameters,the PI controller had certain instabilities in the presence of disturbances.The classic sliding mode controller had a higher accuracy and stability;however its main drawback was the chattering phenomenon.HOSMC was highly accurate and stable and had a small computational cost.In reality,it followed the desired values without oscillations and chattering.展开更多
The possibility to enhance the stability and robustness of electrohydraulic brake(EHB)systems is considered a subject of great importance in the automotive field.In such a context,the present study focuses on an actua...The possibility to enhance the stability and robustness of electrohydraulic brake(EHB)systems is considered a subject of great importance in the automotive field.In such a context,the present study focuses on an actuator with a four-way sliding valve and a hydraulic cylinder.A 4-order nonlinear mathematical model is introduced accordingly.Through the linearization of the feedback law of the high order EHB model,a sliding mode control method is proposed for the hydraulic pressure.The hydraulic pressure tracking controls are simulated and analyzed by MATLAB/Simulink soft considering separately different conditions,i.e.,a sine wave,a square wave and a square wave with superimposed sine disturbance.The results show that the proposed strategy can track the target within 0.25 s,and the mean observed error is less than 1.2 bar.Moreover,with such a strategy,faster response and less overshoot are possible,which should be regarded as significant advantages.展开更多
Since the combustion system of coal-fired boiler in thermal power plant is characterized as time varying, strongly coupled, and nonlinear, it is hard to achieve a satisfactory performance by the conventional proportio...Since the combustion system of coal-fired boiler in thermal power plant is characterized as time varying, strongly coupled, and nonlinear, it is hard to achieve a satisfactory performance by the conventional proportional integral derivative (PID) control scheme. For the characteristics of the main steam pressure in coal-fired power plant boiler, the sliding mode control system with Smith predictive structure is proposed to look for performance and robustness improvement. First, internal model control (IMC) and Smith predictor (SP) is used to deal with the time delay, and sliding mode controller (SMCr) is designed to overcome the model mismatch. Simulation results show the effectiveness of the proposed controller compared with conventional ones.展开更多
A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of ...A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of CFS is subjected to unknown load characteristics of rock or soil; in addition,the geological condition is time-varying.Due to the complex load characteristics of rock or soil,the feeding velocity of TC is related to geological conditions.What is worse,its dynamic model is subjected to uncertainties and its function is unknown.To deal with the particular characteristics of CFS,a novel adaptive fuzzy integral sliding mode control(AFISMC) was designed for feeding pressure control of CFS,which combines the robust characteristics of an integral sliding mode controller and the adaptive adjusting characteristics of an adaptive fuzzy controller.The AFISMC feeding pressure controller is synthesized using the backstepping technique.The stability of the overall closed-loop system consisting of the adaptive fuzzy inference system,integral sliding mode controller and the cutter feeding system is proved using Lyapunov theory.Experiments are conducted on a TC test bench with the AFISMC under different operating conditions.The experimental results demonstrate that the proposed AFISMC feeding pressure controller for CFS gives a superior and robust pressure tracking performance with maximum pressure tracking error within ?0.3 MPa.展开更多
To study the relative sensitivity of permeability to pore pressure Pp and confining pressure Pc for clay-rich rocks, permeability measurements were performed on samples of four clay-rich sandstones. A new method (her...To study the relative sensitivity of permeability to pore pressure Pp and confining pressure Pc for clay-rich rocks, permeability measurements were performed on samples of four clay-rich sandstones. A new method (hereafter denoted the "slide method") was developed and used for analyzing the permeability data obtained. The effective pressure coefficients for permeability nk were calculated. The values of nk were found to be greater than 1.0 and insensitive to changes in pressure. These results confirmed observations previously made on clay-rich rocks. Also, the coefficients nk obtained had different characteristics for different samples because of differences in the types of clay they contained. The effective pressure law (σeff=Pc-nkPp) determined using the slide method gave better results about k(oefr) than classic Terzaghi's law (σeff=Pc-nkPp).展开更多
Split Hopkinson pressure bar (SHPB) has become a frequently used technique to measure the uniaxial compressive stress-strain relation of various engineering materials at high strain-rates. The accuracy of an SHPB test...Split Hopkinson pressure bar (SHPB) has become a frequently used technique to measure the uniaxial compressive stress-strain relation of various engineering materials at high strain-rates. The accuracy of an SHPB test is based on the assumption of uniaxial and uniform stress distribution within the specimen, which, however, is not always satisfied in an actual SHPB test due to the existence of some unavoidable negative factors, e.g., interface friction constrains. Kinetic interface friction tests based on a simple device for engineering materials testing on SHPB tests are performed. A kinetic interface friction model is proposed and validated by implementing it into a numerical model. It shows that the proposed simple device is sufficient to obtain kinetic interface friction results for common SHPB tests. The kinetic friction model should be used instead of the frequently used constant friction model for more accurate numerical simulation of SHPB tests.展开更多
Stabilizing pile is a kind of earth shoring structure frequently used in slope engineering. When the piles have cantilever segments above the ground,laggings are usually installed to avoid collapse of soil between pil...Stabilizing pile is a kind of earth shoring structure frequently used in slope engineering. When the piles have cantilever segments above the ground,laggings are usually installed to avoid collapse of soil between piles. Evaluating the earth pressure acting on laggings is of great importance in design process.Since laggings are usually less stiff than piles,the lateral pressure on lagging is much closer to active earth pressure. In order to estimate the lateral earth pressure on lagging more accurately,first,a model test of cantilever stabilizing pile and lagging systems was carried out. Then,basing the experimental results a three-dimensional sliding wedge model was established. Last,the calculation process of the total active force on lagging is presented based on the kinematic approach of limit analysis. A comparison is made between the total active force on lagging calculated by the formula presented in this study and the force on a same-size rigid retaining wall obtained from Rankine's theory. It is found that the proposed method fits well with the experimental results.Parametric studies show that the total active force on lagging increases with the growth of the lagging height and the lagging clear span; while decreases asthe soil internal friction angle and soil cohesion increase.展开更多
High pressure is an important development orientation in pneumatic field,since it can not only improve dynamic characteristics of pneumatic system but also decrease the size of components and mounting space.Due to the...High pressure is an important development orientation in pneumatic field,since it can not only improve dynamic characteristics of pneumatic system but also decrease the size of components and mounting space.Due to the advantages of high energy density and high instant expansibility,high pressure gas has been widely used in many applications.However,systematic researches are lacked especially in pressure characteristics which are very important in pneumatic system at present.In a high pressure pneumatic system,the pressure of a fixed cavity with annular clearance needs to be controlled within a wide range,so a single stage proportional slide valve is proposed to satisfy the requirements of high pressure and low flow rate.First,working principle and structure of the pressure assembly and the slide valve are introduced.Then mathematical model of the high pressure pneumatic system is built up;controllable pressure range is simulated,and influence of uncertain factors,such as fit clearance of the pressure valve and the cavity on controllable pressure,is discussed.Finally,a test bench of the pressure assembly is built up,and the controllable pressure and step response experiments are carried out.Both simulation and experimental results show that the designed slide valve can satisfy the requirements well.The proposed clearance presumption method based on simulation and experimental results is valuable for indirect measurement of processing tolerance.展开更多
This paper presents findings on the sliding mode controller for a nuclear reactor. One of the important operations in nuclear power plants is load following. In this paper, a sliding mode control system, which is a ro...This paper presents findings on the sliding mode controller for a nuclear reactor. One of the important operations in nuclear power plants is load following. In this paper, a sliding mode control system, which is a robust nonlinear controller, is designed to control the pressurizedwater reactor power. The reactor core is simulated based on the point kinetics equations and six delayed neutron groups. Considering neutron absorber poisons and regarding the limitations of the xenon concentration measurement, a sliding mode observer is designed to estimate its value, and finally, a sliding mode control based on the sliding mode observer is presented to control the core power of reactor. The stability analysis is given by means Lyapunov approach; thus, the control system is guaranteed to be stable within a large range. The employed method is easy to implement in practical applications, and moreover,the sliding mode control exhibits the desired dynamic properties during the entire output-tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed observerbased controller in terms of performance, robustness and stability.展开更多
The results of the tests for a friction pair “a cylindrical specimen made of 0.45% carbon steel—a counter specimen-liner made of polytetrafluoroethyleneF4-B” during sliding friction are presented. The test results ...The results of the tests for a friction pair “a cylindrical specimen made of 0.45% carbon steel—a counter specimen-liner made of polytetrafluoroethyleneF4-B” during sliding friction are presented. The test results at different levels of contact load are analyzed using the Archard’s equation and are presented as a friction fatigue curve. The concept of the frictional stress intensity factor during sliding friction is introduced, and an expression that relates the wear rate to this factor and is close in shape to the Paris equation in fracture mechanics is proposed.展开更多
This paper studies the effect of fissure water pressure in different fractures on the critical angle of landslide by laboratory investigation and numerical simulation in order to understand the mechanisms of fissure w...This paper studies the effect of fissure water pressure in different fractures on the critical angle of landslide by laboratory investigation and numerical simulation in order to understand the mechanisms of fissure water pressure on landslide stability. Laboratory observations show that the effect of fissure water pressure on the critical angle of landslide is little when the distance between water-holding fracture and slope toe is three times greater than the depth of fissure water. These experimental results are also simulated by a three-dimensional face-to-face contact discrete element method. This method has included the fissure water pressure and can accurately calculate the critical angle of jointed slope when fissure water pressure in vertical sliding surface exists. Numerical results are in good agreement with experimental observations. It is revealed that the location of water-holding structural surface is important to landslide stability. The ratio of the distance between water-holding fissure and slope toe to the depth of fissure water is a key parameter to justify the effect of fissure water pressure on the critical angle of landslide.展开更多
文摘Nuclear power plants exhibit non-linear and time-variable dynamics.Therefore,designing a control system that sets the reactor power and forces it to follow the desired load is complicated.A supercritical water reactor(SCWR)is a fourth-generation conceptual reactor.In an SCWR,the non-linear dynamics of the reactor require a controller capable of control-ling the nonlinearities.In this study,a pressure-tube-type SCWR was controlled during reactor power maneuvering with a higher order sliding mode,and the reactor outgoing steam temperature and pressure were controlled simultaneously.In an SCWR,the temperature,pressure,and power must be maintained at a setpoint(desired value)during power maneuvering.Reactor point kinetics equations with three groups of delayed neutrons were used in the simulation.Higher-order and classic sliding mode controllers were separately manufactured to control the plant and were compared with the PI controllers speci-fied in previous studies.The controlled parameters were reactor power,steam temperature,and pressure.Notably,for these parameters,the PI controller had certain instabilities in the presence of disturbances.The classic sliding mode controller had a higher accuracy and stability;however its main drawback was the chattering phenomenon.HOSMC was highly accurate and stable and had a small computational cost.In reality,it followed the desired values without oscillations and chattering.
基金supported by the National Natural Science Foundation of China[grant number 51565011]the Foundation of Educational Department of Jiangxi Province[grant number GJJ180302].
文摘The possibility to enhance the stability and robustness of electrohydraulic brake(EHB)systems is considered a subject of great importance in the automotive field.In such a context,the present study focuses on an actuator with a four-way sliding valve and a hydraulic cylinder.A 4-order nonlinear mathematical model is introduced accordingly.Through the linearization of the feedback law of the high order EHB model,a sliding mode control method is proposed for the hydraulic pressure.The hydraulic pressure tracking controls are simulated and analyzed by MATLAB/Simulink soft considering separately different conditions,i.e.,a sine wave,a square wave and a square wave with superimposed sine disturbance.The results show that the proposed strategy can track the target within 0.25 s,and the mean observed error is less than 1.2 bar.Moreover,with such a strategy,faster response and less overshoot are possible,which should be regarded as significant advantages.
基金Supported by the National Natural Science Foundation of China (61174059, 60934007, 61233004)the National Basic Research Program of China (2013CB035406)Shanghai Rising-Star Tracking Program (11QH1401300)
文摘Since the combustion system of coal-fired boiler in thermal power plant is characterized as time varying, strongly coupled, and nonlinear, it is hard to achieve a satisfactory performance by the conventional proportional integral derivative (PID) control scheme. For the characteristics of the main steam pressure in coal-fired power plant boiler, the sliding mode control system with Smith predictive structure is proposed to look for performance and robustness improvement. First, internal model control (IMC) and Smith predictor (SP) is used to deal with the time delay, and sliding mode controller (SMCr) is designed to overcome the model mismatch. Simulation results show the effectiveness of the proposed controller compared with conventional ones.
基金Project(2012AA041801)supported by the High-tech Research and Development Program of China
文摘A nonlinear pressure controller was presented to track desired feeding pressure for the cutter feeding system(CFS) of trench cutter(TC) in the presence of unknown external disturbances.The feeding pressure control of CFS is subjected to unknown load characteristics of rock or soil; in addition,the geological condition is time-varying.Due to the complex load characteristics of rock or soil,the feeding velocity of TC is related to geological conditions.What is worse,its dynamic model is subjected to uncertainties and its function is unknown.To deal with the particular characteristics of CFS,a novel adaptive fuzzy integral sliding mode control(AFISMC) was designed for feeding pressure control of CFS,which combines the robust characteristics of an integral sliding mode controller and the adaptive adjusting characteristics of an adaptive fuzzy controller.The AFISMC feeding pressure controller is synthesized using the backstepping technique.The stability of the overall closed-loop system consisting of the adaptive fuzzy inference system,integral sliding mode controller and the cutter feeding system is proved using Lyapunov theory.Experiments are conducted on a TC test bench with the AFISMC under different operating conditions.The experimental results demonstrate that the proposed AFISMC feeding pressure controller for CFS gives a superior and robust pressure tracking performance with maximum pressure tracking error within ?0.3 MPa.
基金supported by a grant from the National Natural Science Foundation of China(Grant No.50774064)the Open Fund PLN0802 of the State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation(Southwest Petroleum University)
文摘To study the relative sensitivity of permeability to pore pressure Pp and confining pressure Pc for clay-rich rocks, permeability measurements were performed on samples of four clay-rich sandstones. A new method (hereafter denoted the "slide method") was developed and used for analyzing the permeability data obtained. The effective pressure coefficients for permeability nk were calculated. The values of nk were found to be greater than 1.0 and insensitive to changes in pressure. These results confirmed observations previously made on clay-rich rocks. Also, the coefficients nk obtained had different characteristics for different samples because of differences in the types of clay they contained. The effective pressure law (σeff=Pc-nkPp) determined using the slide method gave better results about k(oefr) than classic Terzaghi's law (σeff=Pc-nkPp).
文摘Split Hopkinson pressure bar (SHPB) has become a frequently used technique to measure the uniaxial compressive stress-strain relation of various engineering materials at high strain-rates. The accuracy of an SHPB test is based on the assumption of uniaxial and uniform stress distribution within the specimen, which, however, is not always satisfied in an actual SHPB test due to the existence of some unavoidable negative factors, e.g., interface friction constrains. Kinetic interface friction tests based on a simple device for engineering materials testing on SHPB tests are performed. A kinetic interface friction model is proposed and validated by implementing it into a numerical model. It shows that the proposed simple device is sufficient to obtain kinetic interface friction results for common SHPB tests. The kinetic friction model should be used instead of the frequently used constant friction model for more accurate numerical simulation of SHPB tests.
基金financially supported by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China under Grant No. 2012BAJ22B06
文摘Stabilizing pile is a kind of earth shoring structure frequently used in slope engineering. When the piles have cantilever segments above the ground,laggings are usually installed to avoid collapse of soil between piles. Evaluating the earth pressure acting on laggings is of great importance in design process.Since laggings are usually less stiff than piles,the lateral pressure on lagging is much closer to active earth pressure. In order to estimate the lateral earth pressure on lagging more accurately,first,a model test of cantilever stabilizing pile and lagging systems was carried out. Then,basing the experimental results a three-dimensional sliding wedge model was established. Last,the calculation process of the total active force on lagging is presented based on the kinematic approach of limit analysis. A comparison is made between the total active force on lagging calculated by the formula presented in this study and the force on a same-size rigid retaining wall obtained from Rankine's theory. It is found that the proposed method fits well with the experimental results.Parametric studies show that the total active force on lagging increases with the growth of the lagging height and the lagging clear span; while decreases asthe soil internal friction angle and soil cohesion increase.
基金supported by National Natural Science Foundation of China(Grant No.50575202)
文摘High pressure is an important development orientation in pneumatic field,since it can not only improve dynamic characteristics of pneumatic system but also decrease the size of components and mounting space.Due to the advantages of high energy density and high instant expansibility,high pressure gas has been widely used in many applications.However,systematic researches are lacked especially in pressure characteristics which are very important in pneumatic system at present.In a high pressure pneumatic system,the pressure of a fixed cavity with annular clearance needs to be controlled within a wide range,so a single stage proportional slide valve is proposed to satisfy the requirements of high pressure and low flow rate.First,working principle and structure of the pressure assembly and the slide valve are introduced.Then mathematical model of the high pressure pneumatic system is built up;controllable pressure range is simulated,and influence of uncertain factors,such as fit clearance of the pressure valve and the cavity on controllable pressure,is discussed.Finally,a test bench of the pressure assembly is built up,and the controllable pressure and step response experiments are carried out.Both simulation and experimental results show that the designed slide valve can satisfy the requirements well.The proposed clearance presumption method based on simulation and experimental results is valuable for indirect measurement of processing tolerance.
文摘This paper presents findings on the sliding mode controller for a nuclear reactor. One of the important operations in nuclear power plants is load following. In this paper, a sliding mode control system, which is a robust nonlinear controller, is designed to control the pressurizedwater reactor power. The reactor core is simulated based on the point kinetics equations and six delayed neutron groups. Considering neutron absorber poisons and regarding the limitations of the xenon concentration measurement, a sliding mode observer is designed to estimate its value, and finally, a sliding mode control based on the sliding mode observer is presented to control the core power of reactor. The stability analysis is given by means Lyapunov approach; thus, the control system is guaranteed to be stable within a large range. The employed method is easy to implement in practical applications, and moreover,the sliding mode control exhibits the desired dynamic properties during the entire output-tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed observerbased controller in terms of performance, robustness and stability.
文摘The results of the tests for a friction pair “a cylindrical specimen made of 0.45% carbon steel—a counter specimen-liner made of polytetrafluoroethyleneF4-B” during sliding friction are presented. The test results at different levels of contact load are analyzed using the Archard’s equation and are presented as a friction fatigue curve. The concept of the frictional stress intensity factor during sliding friction is introduced, and an expression that relates the wear rate to this factor and is close in shape to the Paris equation in fracture mechanics is proposed.
文摘This paper studies the effect of fissure water pressure in different fractures on the critical angle of landslide by laboratory investigation and numerical simulation in order to understand the mechanisms of fissure water pressure on landslide stability. Laboratory observations show that the effect of fissure water pressure on the critical angle of landslide is little when the distance between water-holding fracture and slope toe is three times greater than the depth of fissure water. These experimental results are also simulated by a three-dimensional face-to-face contact discrete element method. This method has included the fissure water pressure and can accurately calculate the critical angle of jointed slope when fissure water pressure in vertical sliding surface exists. Numerical results are in good agreement with experimental observations. It is revealed that the location of water-holding structural surface is important to landslide stability. The ratio of the distance between water-holding fissure and slope toe to the depth of fissure water is a key parameter to justify the effect of fissure water pressure on the critical angle of landslide.