期刊文献+
共找到2,863篇文章
< 1 2 144 >
每页显示 20 50 100
Vibration attenuation performance of wind turbine tower using a prestressed tuned mass damper under seismic excitation
1
作者 Lei Zhenbo Liu Gang +1 位作者 Wang Hui Hui Yi 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第2期511-524,共14页
With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cau... With the rapid development of large megawatt wind turbines,the operation environment of wind turbine towers(WTTs)has become increasingly complex.In particular,seismic excitation can create a resonance response and cause excessive vibration of the WTT.To investigate the vibration attenuation performance of the WTT under seismic excitations,a novel passive vibration control device,called a prestressed tuned mass damper(PS-TMD),is presented in this study.First,a mathematical model is established based on structural dynamics under seismic excitation.Then,the mathematical analytical expression of the dynamic coefficient is deduced,and the parameter design method is obtained by system tuning optimization.Next,based on a theoretical analysis and parameter design,the numerical results showed that the PS-TMD was able to effectively mitigate the resonance under the harmonic basal acceleration.Finally,the time-history analysis method is used to verify the effectiveness of the traditional pendulum tuned mass damper(PTMD)and the novel PS-TMD device,and the results indicate that the vibration attenuation performance of the PS-TMD is better than the PTMD.In addition,the PS-TMD avoids the nonlinear effect due to the large oscillation angle,and has the potential to dissipate hysteretic energy under seismic excitation. 展开更多
关键词 wind turbine tower prestressed tuned mass damper vibration control seismic excitation numerical simulation
下载PDF
Effects of soil profile and characteristic of exciting force on propagation of ground vibrations
2
作者 Sunao KUNIMATSU Yoshihiro HIRAO Yasutoshi KITAMURA 《Journal of Modern Transportation》 2012年第3期129-137,共9页
Ground-borne vibrations caused by vibration sources such as road traffic and construction exhibit complicated properties during propagation from the vibration source to the inside of a building. In the present paper, ... Ground-borne vibrations caused by vibration sources such as road traffic and construction exhibit complicated properties during propagation from the vibration source to the inside of a building. In the present paper, a numerical analysis technique for the system of vibration source and propagation path of ground vibration is developed in order to systematically determine the propagation properties of the vibration as part of developing a predictive technique for exposure evaluations by vibrations in three directions at receiving points of vibration in the human body. First, the exciting forces in three directions for input into the numerical computation are inversely-estimated by using the measured acceleration rec- ords of the measurement points, which are near the vibration source. The thin-layered element method is used for numerical computation of the ground vibration. Then, the calculation results for the ground vibration obtained by using the estimated exciting force are compared with the measured results, and the influence of the stratified structure of the ground on the exciting force and the propagation properties of the ground vibration are studied. From these results, in a prediction of the ground vibration in three directions, it is emphasized that it is necessary to consider the influence of horizontal exciting force, although attention has been paid to only the vertical exciting force for simulating ground vibration. 展开更多
关键词 ground-borne vibration vibration source exciting force stratified structure soil profile
下载PDF
THE ANALYSIS FOR THE AIRFLOW EXCITING-VIBRATION FORCE OF CONTROL STAGE OF STEAM TURBINE
3
作者 柴山 张耀明 +2 位作者 马浩 曲庆文 赵又群 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第7期794-801,共8页
Based on the hydrodynamics, the airflow exciting-vibration force of control stage of steam turbine is studied by using the momentum theorem. A formulation for calculating the air exciting-vibration force of the contro... Based on the hydrodynamics, the airflow exciting-vibration force of control stage of steam turbine is studied by using the momentum theorem. A formulation for calculating the air exciting-vibration force of the control stage of steam turbine is deduced first by using theoretical analysis method and taking all the design factors of vane and nozzles into consideration. Moreover, the exciting-vibration forces in different load cases are discussed respectively. 展开更多
关键词 rotor dynamics exciting-vibration force AIRFLOW
下载PDF
Experimental Investigation on Vibration Control of Rotor-bearing System with Active Magnetic Exciter 被引量:11
4
作者 WANG Weimin GAO Jinji +1 位作者 HUANG Liquan XIN Zhengqiu 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第6期1013-1021,共9页
Vibration control is an efficient way to minimize a rotating machine’s vibration level so that its vibration fault-free can be realized.While,several factors,such as unbalance,misalignment and instability,contribute ... Vibration control is an efficient way to minimize a rotating machine’s vibration level so that its vibration fault-free can be realized.While,several factors,such as unbalance,misalignment and instability,contribute to the serious vibration of rotating machines.It is necessary that one apparatus can depress vibration caused by two or more reasons.The fault self-recovery(FSR) mechanism is introduced and investigated.Strategies of vibration control are investigated theoretically using numerical method firstly.Active magneticelectric exciter(AME) are selected as the actuator of a FSR device because it can provide suitable force by varying the control current in the exciters depending upon a proportional and derivative control law.By numerical study,it is indicate that only a small control force is needed to improve stability margins of the compressor and prevent subsynchronous vibration fault efficiently.About synchronous vibration,three control strategies,searching in whole circle,fast optimizing control(FOC),and none mistaking control,are investigated to show which of the control strategy can realize the fault self-recovery in the shortest time.Experimental study is conducted on a test rig with variable rotating speed.Results of the test indicate that the non-mistake control strategy can minimize synchronous vibration in less than three seconds.The proposed research can provide a new insight for subsynchronous and synchronous vibration restraining about centrifugal compressor. 展开更多
关键词 vibration control rotor-bearing system active magnetic exciter subsynchronous
下载PDF
Separate Control of High Frequency Electro-hydraulic Vibration Exciter 被引量:7
5
作者 JIA Wen'ang RUAN Jian REN Yan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第2期293-302,共10页
The working frequency of the conventional electro-hydraulic vibration exciters,which consist of a servo valve and a hydraulic cylinder,is generally restricted within a narrow range due to limited frequency response ca... The working frequency of the conventional electro-hydraulic vibration exciters,which consist of a servo valve and a hydraulic cylinder,is generally restricted within a narrow range due to limited frequency response capability of the servo valve itself.To counteract such restriction,a novel scheme for an electro-hydraulic vibrator,controlled by a two-dimensional valve(2D valve) and a bias valve in parallel,is therefore proposed.The frequency,amplitude and offset are independently controlled by rotary speed,axial sliding of the spool of the 2D valve and axial sliding of the spool of the bias valve.The principle of separate control was presented and the regulation approach of frequency,amplitude and offset was discussed.A mathematical model of the hydraulic power mechanism for the proposed vibration exciter was established to investigate the relationship between the amplitude and the axial sliding of the 2D valve' spool,as well as that between the offset and the axial sliding of the bias valve's spool at various frequencies.An experimental system was built to validate the theoretical analysis.It is verified that the 2D exciter is capable of working smoothly in a frequency range of 5- 200 Hz.And its frequency,amplitude and offset can be controlled respectively by either closed loop or open loop method.There is a linear relationship between the output amplitude and the spool axial opening of the 2D valve until a point when the flow rate becomes saturate and the amplitude remains constant.The offset displacement of the cylinder's piston is linearly proportional to the axial displacement of the spool of the bias valve,when the valve opening is less than 25%.Thereafter,the slop of the offset curve decreases and tends to saturate.The proposed electro-hydraulic vibration controlled by the 2D valve not only facilitates the realization of high-frequency electro-hydraulic vibration,the high-accuracy of vibration can also be achieved by means of independent controls to the frequency,amplitude and offset. 展开更多
关键词 control valves electro-hydraulic system vibration exciter dynamics characteristics
下载PDF
Parametric Vibration of Submerged Floating Tunnel Tether Under Random Excitation 被引量:6
6
作者 孙胜男 苏志彬 《China Ocean Engineering》 SCIE EI 2011年第2期349-356,共8页
For the study of the parametric vibration response of submerged floating tunnel tether under random excitation, a nonlinear random parametric vibration equation of coupled tether and tube of submerged floating tunnel ... For the study of the parametric vibration response of submerged floating tunnel tether under random excitation, a nonlinear random parametric vibration equation of coupled tether and tube of submerged floating tunnel is set up. Subsequently, vibration response of tether in the tether-tube system is analyzed by Monte Carlo method. It may be concluded that when the tube is subjected to zero-mean Gaussian white noise random excitation, the displacement and velocity root mean square responses of tether reach the peak if the circular frequency of tube doubles that of tether; the displacement and velocity root mean square responses of tether increase as the random excitation root mean square increases; owing to the damping force of water, the displacement and velocity root mean square responses of tether decrease rapidly compared with tether in air; increasing the damping of the tether or tube reduces the displacement and velocity root mean square responses of tether; the large-amplitude vibration of tether may be avoided by locating dampers on the tether or tube. 展开更多
关键词 ocean engineering submerged floating tunnel TETHER parametric vibration random excitation
下载PDF
Identification of Axial Vibration Excitation Source in Vehicle Engine Crankshafts Using an Auto-regressive and Moving Average Model 被引量:3
7
作者 LIANG Xingyu WANG Yuesen +3 位作者 SHU Gequn WEI Haiqiao DONG Lihui MEI Yifan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2011年第6期1022-1027,共6页
Violent axial vibration of a vehicle engine crankshaft might lead to multiple defects to the engine.Much research on mechanism and control measures has been done on engines,such as using the dynamic stiffness matrix m... Violent axial vibration of a vehicle engine crankshaft might lead to multiple defects to the engine.Much research on mechanism and control measures has been done on engines,such as using the dynamic stiffness matrix method,rayleigh differential method,and system matrix method.But the source of axial vibration has not been identified clearly because there are many excitation factors for the axial vibration of a crankshaft,such as coupled torsional-axial vibration and coupled bending-axial vibration,etc.In order to improve the calculation reliability and identify the excitation source of axial vibration of in vehicle engine crankshafts,this paper presents a method to identify the axial vibration excitation source of crankshafts for high speed diesel engines based on an auto-regressive and moving average(ARMA) model.Through determining initial moving average variables and measuring axial /bending/torsional vibrations of a crankshaft at the free-end of a 4-cylinder diesel engine,autoregressive spectrum analysis is applied to the measured vibration signal.The results show that the axial vibration of the crankshaft is mainly excited by coupled bending vibration at high speed.But at low speed,the axial vibration in some frequencies is excited primarily by torsional excitation.Through investigation of axial vibration source of engine crankshafts,calculation accuracy of vibration can be improved significantly. 展开更多
关键词 automotive engine CRANKSHAFT axial vibration excitation source ARMA
下载PDF
Vibration and acoustic radiation of bogie area under random excitation in high-speed trains 被引量:3
8
作者 Dongzhen Wang Jianmin Ge 《Journal of Modern Transportation》 2019年第2期120-128,共9页
Based on the experiments on a platform with real vehicle structure and finite element simulation, the vibration and interior acoustic radiation under random excitations of high-speed trains’ bogie area were studied. ... Based on the experiments on a platform with real vehicle structure and finite element simulation, the vibration and interior acoustic radiation under random excitations of high-speed trains’ bogie area were studied. Firstly, combined with line tests, a vehicle body with a length of 7 m was used as the research object. By comparing the results of experiment and simulation, the accuracy of the finite element model was verified. Secondly, the power spectral density curves at typical measuring points in bogie area were obtained by processing and calculating the line test data, which was measured when the vehicle ran at high speeds, and the standard vibration spectrum of the bogie area was obtained by the extreme envelope method. Furthermore, the random vibration test and simulation prediction analysis of the real vehicle structure were carried out to further verify the accuracy of the noise and vibration prediction model. Finally, according to the vibration and acoustic radiation theory, the indirect boundary element method was adopted to predict the acoustic response of the real vehicle. The analysis shows that the simulated power spectral density curves of acceleration and sound pressure level are highly consistent with the experimental ones, and the error between the simulated prediction and the experimental result is within the allowable range of 3 dB. 展开更多
关键词 High-speed TRAINS Standard vibration spectrum Indirect BOUNDARY ELEMENT method RANDOM excitATION Acoustic radiation
下载PDF
Quantitative behavior of vibrational excitation in AC plasma assisted dry reforming of methane 被引量:3
9
作者 Jintao Sun Qi Chen +2 位作者 Yuanwei Guo Zili Zhou Yang Song 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第7期133-143,I0005,共12页
Quantitative behavior of non-equilibrium excitation by direct electron impact in low-temperature dry reforming of methane was investigated by integrated studies of experimental validation and kinetic modeling.A plasma... Quantitative behavior of non-equilibrium excitation by direct electron impact in low-temperature dry reforming of methane was investigated by integrated studies of experimental validation and kinetic modeling.A plasma chemistry kinetic mechanism incorporating the reactions involving vibrational excitation of CH4,CO2,H2 and CO molecules as well as the low temperature He/CH4/CO2 conversion pathways was developed and validated.The calculation results showed that at lower E/N values(<150 Td)large population of energized electrons generated in a He/CH4/CO2 discharge resulted in an intensification of vibrational excitation.Despite the large generation of vibration,the vibrationally excited molecules in a 0.5/0.25/0.25 of He/CH4/CO2 discharge mixture were easy to relax,due to the strong coupling of the vibration of different molecules in a gas mixture.The results showed that the moderate levels of the vibrational excitation,such as CO2(v10,11,...,18)and CO(v9,10),presented most efficient in the stimulation of species generation including CO,CH2 O,CH3 OH,C2 H4 and C2 H6.Specifically,under conditions of E/N of 108 Td,14.9%of CO formation was estimated from the recombination of CO2(v)with CH3 and H,CO2(v)+CH3→CH3 O+CO,CO2(v)+H→CO+OH.Also,4.8%of C2 H4 formation was from the recombination reaction CH4(v)+CH→C2 H4+H.These results highlight the strong roles of vibrational states in a complex plasma chemistry system. 展开更多
关键词 Non-equilibrium plasma Dry reforming vibrational excitation Low-temperature chemistry Plasma assisted combustion
下载PDF
Response of train-bridge system under intensive seismic excitation by random vibration method 被引量:3
10
作者 WU Zhao-zhi ZHANG Nan 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第8期2467-2484,共18页
Earthquake is a kind of sudden and destructive random excitation in nature.It is significant to determine the probability distribution characteristics of the corresponding dynamic indicators to ensure the safety and t... Earthquake is a kind of sudden and destructive random excitation in nature.It is significant to determine the probability distribution characteristics of the corresponding dynamic indicators to ensure the safety and the stability of structures when the intensive seismic excitation,the intensity of which is larger than 7,acts in train-bridge system.Firstly,the motion equations of a two-dimensional train-bridge system under the vertical random excitation of track irregularity and the vertical seismic acceleration are established,where the train subsystem is composed of 8 mutually independent vehicle elements with 48 degrees of freedom,while the single-span simple supported bridge subsystem is composed of 102D beam elements with 20 degrees of freedom on beam and 2 large mass degrees of freedom at the support.Secondly,Monte Carlo method and pseudo excitation method are adopted to analyze the statistical parameters of the system.The power spectrum density of random excitation is used to define a series of non-stationary pseudo excitation in pseudo excitation method and the trigonometric series of random vibration history samples in Monte Carlo method,respectively solved by precise integral method and Newmark-βmethod through the inter-system iterative procedure.Finally,the results are compared with the case under the weak seismic excitation,and show that the samples of vertical acceleration response of bridge and the offload factor of train obeys the normal distribution.In a high probability,the intensive earthquakes pose a greater threat to the safety and stability of bridges and trains than the weak ones. 展开更多
关键词 random vibration method intensive seismic excitation train-bridge system probability distribution inter system iteration precise integral method
下载PDF
Effects of the vibrational and rotational excitation of reagent on the stereodynamics of the reaction S (3P) + H2→ SH + H 被引量:1
11
作者 单广玲 王美山 +1 位作者 杨传路 李艳青 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第6期580-586,共7页
Quasiclassical trajectory (QCT) calculations are first carried out to study the stereodynamics of the S (3p) + H2 → SH + H reaction based on the ab initio 13Atr potential energy surface (PES) (Lii etal. 2012... Quasiclassical trajectory (QCT) calculations are first carried out to study the stereodynamics of the S (3p) + H2 → SH + H reaction based on the ab initio 13Atr potential energy surface (PES) (Lii etal. 2012 J. Chem. Phys. 136 094308). The QCT-calculated reaction probabilities and cross sections for the S + H2 (v = 0, j = 0) reaction are in good agreement with the previous quantum mechanics (QM) results. The vector properties including the alignment, orientation, and polarization- dependent differential cross sections (PDDCSs) of the product SH are presented at a collision energy of 1.8 eV. The effects of the vibrational and rotational excitations of reagent on the stereodynamics are also investigated and discussed in the present work. The calculated QCT results indicate that the vibrational and rotational excitations of reagent play an important role in determining the stereodynamic properties of the title reaction. 展开更多
关键词 STEREODYNAMICS QCT method vector correlation vibrational and rotational excitation
下载PDF
EQUIVALENT EXCITATION METHOD FOR VIBRATION ISOLATION DESIGN:THEORETICAL ANALYSIS AND EXPERIMENTAL RESULTS 被引量:1
12
作者 HuoRui ShiYin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第2期246-250,共5页
In view of difficulties concerned with direct measurement of excitationsinside source equipments and their significant influence on vibration isolation effectiveness, adynamical model, for vibration isolation of a rig... In view of difficulties concerned with direct measurement of excitationsinside source equipments and their significant influence on vibration isolation effectiveness, adynamical model, for vibration isolation of a rigid machine with six-degree-of-freedom mounted on aflexible foundation through multiple mounts, is analyzed, in which the complicated and multipledisturbances inside the machine are described as an equivalent excitation spectrum. And a method forthe estimation of the equivalent excitation spectrum according to system dynamic responses isdiscussed for the quantitative prediction of isolation effectiveness. Both theoretical analysis andexperimental results are demonstrated. Further work shows the quantitative prediction of transmittedpower flow in a flexible vibration isolation experiment system using the proposed equivalentexcitation spectrum method, by comparison with its testing results. 展开更多
关键词 vibration isolation excitation spectrum Effectiveness estimation
下载PDF
Kinetic roles of vibrational excitation in RF plasma assisted methane pyrolysis 被引量:1
13
作者 Jintao Sun Qi Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第12期188-197,共10页
A combined experimental and simulational work was carried out in this paper to investigate the kinetic effects of non-equilibrium excitation by direct electron impact on low temperature pyrolysis of CH4 in a RF dielec... A combined experimental and simulational work was carried out in this paper to investigate the kinetic effects of non-equilibrium excitation by direct electron impact on low temperature pyrolysis of CH4 in a RF dielectric barrier discharge.Special attention was placed on the vibrational chemistry of CH4 and some other important products including H2,C2H2,C2H4,C2H6 and C3H8 largely produced in CH4/He discharge under an intermediate reduced electric field ranging 51-80 Td.A detailed kinetic mechanism incorporating a set of electron impact reactions,electron-ion recombination reactions,negative ions attachment reactions,charge exchange reactions,reactions involving vibrationally excited molecules and the relaxation process of vibrationally excited species was assembled and experimentally validated.The modeling results showed a reasonable agreement with the experimentally measured results in terms of CH4 conversion and products production including C2 hydrocarbons and hydrogen.A linear increasing trend of methane conversion with increasing plasma power input was discovered,which suggested a strong dependence of molecular excitation on energy input.Both the CH4/He mole ratio and the reactor temperature play significant roles in CH4 conversion and major products production.The experimental results showed that the selectivity of value-added products C2H4 and H2 keeps essentially unchanged with increasing energy input,mostly because the contribution CH4 ionization and He excitation effectively compete with vibrational excitation and dissociation of CH4 molecule with the E/N value increasing.The calculated results showed that the typical relaxation time of vibrational states is comparable to the gas-kinetics time in a CH4/He discharge mixture,thus the vibrationally excited molecules can significantly accelerate chemical reactions through an effective decrease of activation energy.The path flux analysis revealed that the vibrationally excited molecules CH4(v)and H2(v)enhanced chain propagation reactions,such as CH4(v)+H→CH3+H2,CH4(v)+CH→C2 H4+H,and H2(v)+C→CH+H,further stimulating the production of active radicals and final products.Specifically,H2(v)+C→CH+H was responsible for 7.9%of CH radical formation and CH4(v)+CH→C2 H4+H accounted for 31.4%of total C2 H4 production.This kinetic study provides new sights in demonstrating the contribution of vibrationally excited molecules in RF plasma assisted methane pyrolysis. 展开更多
关键词 Non-equilibrium plasma Methane pyrolysis vibrational excitation Path flux analysis Sensitivity analysis
下载PDF
Coupled extension and thickness-twist vibrations of lateral field excited AT-cut quartz plates 被引量:1
14
作者 Ting-Feng Ma Rong-Xing Wu +4 位作者 Ji Wang Jian-Ke Du Li-Li Yuan Fa-Peng Yu Chao Xie 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第1期67-72,共6页
In this paper, the coupled extension and thickness- twist vibrations are studied for AT-cut quartz plates under Lateral Field Excitation (LFE) with variations along the x1- direction. Mindlin's two-dimensional equa... In this paper, the coupled extension and thickness- twist vibrations are studied for AT-cut quartz plates under Lateral Field Excitation (LFE) with variations along the x1- direction. Mindlin's two-dimensional equations are used for anisotropic crystal plates. Both free and electrically forced vibrations are considered. Important vibration characteristics are obtained, including dispersion relations, frequency spectra, and motional capacitances. It is shown that, to avoid the effects of the couplings between extension and thickness-twist vibrations, a series of discrete values of the length/thickness ratio of the crystal plate need to be excluded. The results are of fundamental significance for the design of LFE resonators and sensors. 展开更多
关键词 Lateral field excitation - Resonators QUARTZ Thickness-twist vibrations
下载PDF
Experimental study on vibration suppression in a rotor system under base excitation using an integral squeeze film damper 被引量:4
15
作者 Yan Wei He Lidong +2 位作者 Zhu Gang Wang Shengli Deng Zhe 《High Technology Letters》 EI CAS 2020年第4期349-359,共11页
Base excitation is one of common excitations in rotor system.In order to study the dynamic characteristics of rotor systems under base excitation and the effect of integral squeeze film dampers(ISFDs)on their dynamic ... Base excitation is one of common excitations in rotor system.In order to study the dynamic characteristics of rotor systems under base excitation and the effect of integral squeeze film dampers(ISFDs)on their dynamic characteristics,a single-disk rotor test rig,where mass imbalance and base excitation could be applied,is developed.Experimental research on the rotor system response under sinusoidal base excitation conditions with different frequencies and excitation forces is performed and the effect of ISFD on the dynamic characteristics of the rotor is investigated.The experimental results demonstrate that when the sinusoidal base excitation frequency approaches the first critical speed of the rotor system or the natural frequency of the rotor system base,strong vibration occurs in the rotor,indicating that the base excitation of the two frequencies has a greater impact on rotor system response.In addition,with the increase of the base excitation force,the vibration of the rotor will be increased.ISFDs can significantly inhibit the vibration due to unbalanced forces and sinusoidal base excitation in rotor systems.To a certain extent,ISFDs can improve the effect of sinusoidal base excitation with most frequencies on rotor system response,and they have a good vibration reduction effect for sinusoidal base excitation with different excitation forces. 展开更多
关键词 Jeffcott rotor dynamic characteristics base excitation integral squeeze film damper(ISFD) vibration suppression
下载PDF
Study of highly excited vibrational dynamics of HCP integrable system with dynamic potential methods 被引量:1
16
作者 Aixing Wang Lifeng Sun +1 位作者 Chao Fang Yibao Liu 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第1期203-211,共9页
Highly excited vibrational dynamics of phosphaethyne(HCP)integrable system are investigated based on its dynamic potentials.Taking into consideration the 2:1 Fermi resonance between H–C–P bending vibrational mode an... Highly excited vibrational dynamics of phosphaethyne(HCP)integrable system are investigated based on its dynamic potentials.Taking into consideration the 2:1 Fermi resonance between H–C–P bending vibrational mode and C–P stretching vibrational mode,it is found that the effects of H–C stretching vibrational mode on vibrational dynamic features of the HCP integrable system are significant and regularly vary with Polyad numbers(P number).The geometrical profiles of the dynamic potentials and the corresponding fixed points are sensitive to the variation of H–C stretching vibrational strength when P numbers are small,but are not sensitive when P numbers become larger and the corresponding threshold values become lower.The phase space trajectories of different energy levels in a designated dynamic potential(P=28)were studied and the results indicated that the dynamic potentials govern the various dynamic environments in which the vibrational states lie.Furthermore,action integrals of the energy levels contained in dynamic potential(P=28)were quantitatively analyzed and elucidated.It was determined that the dynamic environments could be identified by the numerical values of the action integrals of trajectories of phase space,which is equivalent with dynamic potentials. 展开更多
关键词 phosphaethyne(HCP) highly excited vibrational state fixed point phase space trajectory
下载PDF
Optical Evaluation of Vibrations in a Roof by the LPD Method
17
作者 Aníbal Valera Guido Castillo Kevin Mejía 《Journal of Civil Engineering and Architecture》 2024年第11期540-544,共5页
In this work,we present the results of the optical evaluation of resonance vibrations in a conventional roof.On this occasion,we took advantage of having an ordinary booth near the laboratory,making it easier for us t... In this work,we present the results of the optical evaluation of resonance vibrations in a conventional roof.On this occasion,we took advantage of having an ordinary booth near the laboratory,making it easier for us to conduct this evaluation.The roof in question has a square geometry and is apparently made of concrete.Following our usual LPD(laser photo deflection)procedure,of exciting the vibrations of the structure through sound and detecting the response optically,we obtain by resonance the first 6 roof’s Eigen oscillations,the same ones that are identified as Modes(1,1),(1,2),(2,2),(1,3),(2,3)and(3,3).The occurrence of these modes in this work is justified in a first approximation through the classical acoustic resonator theory. 展开更多
关键词 STRUCTURAL vibrations RESONANCE SOUND excitATION LPD
下载PDF
HIGH-ORDER SELF-EXCITED VIBRATION INDUCED BY DRY FRICTION BETWEEN TWO ELASTIC STRUCTURES——VIBRATION MECHANISM OF THE CHINESE CULTURE RELIC DRAGON WASHBASIN 被引量:5
18
作者 刘习军 王大钧 +3 位作者 陈予恕 张丽 黄清华 李俊宝 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2001年第4期340-347,共8页
Combining theoretical and experimental modal analyses on self-excited vibration induced by dry friction between two elastic structures, we can explain the high-order sell-excited vibration phenomenon in which water dr... Combining theoretical and experimental modal analyses on self-excited vibration induced by dry friction between two elastic structures, we can explain the high-order sell-excited vibration phenomenon in which water droplets spurt from fourteen or twelve areas of the Chinese culture relic dragon washbasin when it is rubbed with hands, and clarify the mechanism of the singular high-order self-excited vibration. The experimental modes and the practical measured results are presented for a special dragon washbasin. The theoretical results agree well with the experimental ones. 展开更多
关键词 modal analysis fluid-solid coupling self-excited vibration
下载PDF
A Strategy for Magnifying Vibration in High-Energy Orbits of a Bistable Oscillator at Low Excitation Levels 被引量:2
19
作者 王光庆 廖维新 《Chinese Physics Letters》 SCIE CAS CSCD 2015年第6期195-198,共4页
This work focuses on how to maintain a high-energy orbit motion of a bistable oscillator when subjected to a low level excitation. An elastic magnifier (EM) positioned between the base and the bistable oscillator is... This work focuses on how to maintain a high-energy orbit motion of a bistable oscillator when subjected to a low level excitation. An elastic magnifier (EM) positioned between the base and the bistable oscillator is used to magnify the base vibration displacement to significantly enhance the output characteristics of the bistable oscillator. The dimensionless electromechanical equations of the bistable oscillator with an EM are derived, and the effects of the mass and stiffness ratios between the EM and the bistable oscillator on the output displacement are studied. It is shown that the jump phenomenon occurs at a lower excitation level with increasing the mass and stiffness ratios. With the comparison of the displacement trajectories and the phase portraits obtained from experiments, it is vMidated that the bistable oscillator with an EM can effectively oscillate in a high-energy orbit and can generate a superior output vibration at a low excitation level as compared with the bistable oscillator without an EM. 展开更多
关键词 EM A Strategy for Magnifying vibration in High-Energy Orbits of a Bistable Oscillator at Low excitation Levels
下载PDF
Analysis on Pseudo Excitation of Random Vibration for Structure of Time Flight Counter 被引量:1
20
作者 WU Qiong LI Dapeng 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2015年第2期325-330,共6页
Traditional computing method is inefficient for getting key dynamical parameters of complicated structure.Pseudo Excitation Method(PEM)is an effective method for calculation of random vibration.Due to complicated an... Traditional computing method is inefficient for getting key dynamical parameters of complicated structure.Pseudo Excitation Method(PEM)is an effective method for calculation of random vibration.Due to complicated and coupling random vibration in rocket or shuttle launching,the new staging white noise mathematical model is deduced according to the practical launch environment.This deduced model is applied for PEM to calculate the specific structure of Time of Flight Counter(ToFC).The responses of power spectral density and the relevant dynamic characteristic parameters of ToFC are obtained in terms of the flight acceptance test level.Considering stiffness of fixture structure,the random vibration experiments are conducted in three directions to compare with the revised PEM.The experimental results show the structure can bear the random vibration caused by launch without any damage and key dynamical parameters of ToFC are obtained.The revised PEM is similar with random vibration experiment in dynamical parameters and responses are proved by comparative results.The maximum error is within 9%.The reasons of errors are analyzed to improve reliability of calculation.This research provides an effective method for solutions of computing dynamical characteristic parameters of complicated structure in the process of rocket or shuttle launching. 展开更多
关键词 pseudo excitation method power spectral density random processes dynamic response vibration
下载PDF
上一页 1 2 144 下一页 到第
使用帮助 返回顶部