Error correction has long been suggested to extend the sensitivity of quantum sensors into the Heisenberg Limit. However, operations on logical qubits are only performed through universal gate sets consisting of finit...Error correction has long been suggested to extend the sensitivity of quantum sensors into the Heisenberg Limit. However, operations on logical qubits are only performed through universal gate sets consisting of finite-sized gates such as Clifford + T. Although these logical gate sets allow for universal quantum computation, the finite gate sizes present a problem for quantum sensing, since in sensing protocols, such as the Ramsey measurement protocol, the signal must act continuously. The difficulty in constructing a continuous logical op-erator comes from the Eastin-Knill theorem, which prevents a continuous sig-nal from being both fault-tolerant to local errors and transverse. Since error correction is needed to approach the Heisenberg Limit in a noisy environment, it is important to explore how to construct fault-tolerant continuous operators. In this paper, a protocol to design continuous logical z-rotations is proposed and applied to the Steane Code. The fault tolerance of the designed operator is investigated using the Knill-Laflamme conditions. The Knill-Laflamme condi-tions indicate that the diagonal unitary operator constructed cannot be fault tolerant solely due to the possibilities of X errors on the middle qubit. The ap-proach demonstrated throughout this paper may, however, find success in codes with more qubits such as the Shor code, distance 3 surface code, [15, 1, 3] code, or codes with a larger distance such as the [11, 1, 5] code.展开更多
This paper discusses optimal binary codes and pure binary quantum codes created using Steane construction. First, a local search algorithm for a special subclass of quasi-cyclic codes is proposed, then five binary qua...This paper discusses optimal binary codes and pure binary quantum codes created using Steane construction. First, a local search algorithm for a special subclass of quasi-cyclic codes is proposed, then five binary quasi-cyclic codes are built. Second, three classical construction methods are generalized for new codes from old such that they are suitable for constructing binary self-orthogonal codes, and 62 binary codes and six subcode chains of obtained self-orthogonal codes are designed. Third, six pure binary quantum codes are constructed from the code pairs obtained through Steane construction. There are 66 good binary codes that include 12 optimal linear codes, 45 known optimal linear codes, and nine known optimal self-orthogonal codes. The six pure binary quantum codes all achieve the performance of their additive counterparts constructed by quaternary construction and thus are known optimal codes.展开更多
文摘Error correction has long been suggested to extend the sensitivity of quantum sensors into the Heisenberg Limit. However, operations on logical qubits are only performed through universal gate sets consisting of finite-sized gates such as Clifford + T. Although these logical gate sets allow for universal quantum computation, the finite gate sizes present a problem for quantum sensing, since in sensing protocols, such as the Ramsey measurement protocol, the signal must act continuously. The difficulty in constructing a continuous logical op-erator comes from the Eastin-Knill theorem, which prevents a continuous sig-nal from being both fault-tolerant to local errors and transverse. Since error correction is needed to approach the Heisenberg Limit in a noisy environment, it is important to explore how to construct fault-tolerant continuous operators. In this paper, a protocol to design continuous logical z-rotations is proposed and applied to the Steane Code. The fault tolerance of the designed operator is investigated using the Knill-Laflamme conditions. The Knill-Laflamme condi-tions indicate that the diagonal unitary operator constructed cannot be fault tolerant solely due to the possibilities of X errors on the middle qubit. The ap-proach demonstrated throughout this paper may, however, find success in codes with more qubits such as the Shor code, distance 3 surface code, [15, 1, 3] code, or codes with a larger distance such as the [11, 1, 5] code.
基金Acknowledgements This work was supported by the National Natural Science Foundation of China (Grant No. 11071255) and Science Foundation for young teachers in Science College, Air Force Engineering University. The authors are very grateful to the anonymous referees and the editors for their valuable comments and suggestions, which help to improve the manuscript significantly.
文摘This paper discusses optimal binary codes and pure binary quantum codes created using Steane construction. First, a local search algorithm for a special subclass of quasi-cyclic codes is proposed, then five binary quasi-cyclic codes are built. Second, three classical construction methods are generalized for new codes from old such that they are suitable for constructing binary self-orthogonal codes, and 62 binary codes and six subcode chains of obtained self-orthogonal codes are designed. Third, six pure binary quantum codes are constructed from the code pairs obtained through Steane construction. There are 66 good binary codes that include 12 optimal linear codes, 45 known optimal linear codes, and nine known optimal self-orthogonal codes. The six pure binary quantum codes all achieve the performance of their additive counterparts constructed by quaternary construction and thus are known optimal codes.