期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
An interface shear damage model of chromium coating/steel substrate under thermal erosion load 被引量:6
1
作者 Xiao-long Li Yong Zang +3 位作者 Yong Lian Min-yu Ma Lei Mu Qin Qin 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第2期405-415,共11页
The Cr-plated coating inside a gun barrel can effectively improve the barrel’s erosion resistance and thus increase the service life.However,due to the cyclic thermal load caused by high-temperature gunpowder,micro-e... The Cr-plated coating inside a gun barrel can effectively improve the barrel’s erosion resistance and thus increase the service life.However,due to the cyclic thermal load caused by high-temperature gunpowder,micro-element damage tends to occur within the Cr coating/steel substrate interface,leading to a gradual deterioration in macro-mechanical properties for the material in the related region.In order to mimic this cyclic thermal load and,thereby,study the thermal erosion behavior of the Cr coating on the barrel’s inner wall,a laser emitter is utilized in the current study.With the help of in-situ tensile test and finite element simulation results,a shear stress distribution law of the Cr coating/steel substrate and a change law of the interface ultimate shear strength are identified.Studies have shown that the Cr coating/steel substrate interface’s ultimate shear strength has a significant weakening effect due to increasing temperature.In this study,the interfacial ultimate shear strength decreases from 2.57 GPa(no erosion)to 1.02 GPa(laser power is 160 W).The data from this experiment is employed to establish a Cr coating/steel substrate interface shear damage model.And this model is used to predict the flaking process of Cr coating by finite element method.The simulation results show that the increase of coating crack spacing and coating thickness will increase the service life of gun barrel. 展开更多
关键词 Cr coating/steel substrate Thermal erosion Finite element simulation Ultimate shear strength Interface shear damage model
下载PDF
Studies of diamond-like carbon (DLC) films deposited on stainless steel substrate with Si/SiC intermediate layers 被引量:3
2
作者 王静 刘贵昌 +2 位作者 王立达 邓新绿 徐军 《Chinese Physics B》 SCIE EI CAS CSCD 2008年第8期3108-3114,共7页
In this work, diamond-like carbon (DLC) films were deposited on stainless steel substrates with Si/SiC intermediate layers by combining plasma enhanced sputtering physical vapour deposition (PEUMS-PVD) and microwa... In this work, diamond-like carbon (DLC) films were deposited on stainless steel substrates with Si/SiC intermediate layers by combining plasma enhanced sputtering physical vapour deposition (PEUMS-PVD) and microwave electron cyclotron resonance plasma enhanced chemical vapour deposition (MW-ECRPECVD) techniques. The influence of substrate negative self-bias voltage and Si target power on the structure and nano-mechanical behaviour of the DLC films were investigated by Raman spectroscopy, nano-indentation, and the film structural morphology by atomic force microscopy (AFM). With the increase of deposition bias voltage, the G band shifted to higher wave-number and the integrated intensity ratio ID/IG increased. We considered these as evidences for the development of graphitization in the films. As the substrate negative self-bias voltage increased, particle bombardment function was enhanced and the sp^3-bond carbon density reducing, resulted in the peak values of hardness (H) and elastic modulus (E). Silicon addition promoted the formation of sp^3 bonding and reduced the hardness. The incorporated Si atoms substituted sp^2- bond carbon atoms in ring structures, which promoted the formation of sp^3-bond. The structural transition from C-C to C-Si bonds resulted in relaxation of the residual stress which led to the decrease of internal stress and hardness. The results of AFM indicated that the films was dense and homogeneous, the roughness of the films was decreased due to the increase of substrate negative self-bias voltage and the Si target power. 展开更多
关键词 diamond-like carbon (DLC) stainless steel substrate intermediate layers
下载PDF
Corrosion Resistance of Ceramic Coating on Steel Substrate
3
作者 XU Qiuhong WANG Zhi SUN Xiang SHI Guopu 《China's Refractories》 CAS 2007年第4期28-31,共4页
Fe/Al2O3 ceramic coating was made by spraying and sol-gel. The corrosion resistance between Fe/Al2O3 ceramic coating and steel 45# was studied. By microscope and X-ray diffraction, the binding and the composition of ... Fe/Al2O3 ceramic coating was made by spraying and sol-gel. The corrosion resistance between Fe/Al2O3 ceramic coating and steel 45# was studied. By microscope and X-ray diffraction, the binding and the composition of the interface were also analyzed. The results showed that Fe/Al2O3 ceramic coating had dense struc- ture, less porosity and better binding with the substrate which was effective to prevent erosive liquor immersing into the inside of ceramic coating. Some substances that distributed homogeneously in Fe/Al2O3 ceramic coating, such as α-Al2O3, FeAlO3 and Fe3Al, could improve the corrosion resistance of this material. 展开更多
关键词 Fe/Al2O3 ceramic coating steel substrate Corrosion resistance
下载PDF
Nanomechanical and Electrochemical Properties of Diamond-Like Carbon (DLC) Films Deposited by Plasma Enhanced Chemical Vapor Deposition (PECVD) Technique
4
作者 王静 刘贵昌 +2 位作者 徐军 邓新绿 王立达 《Plasma Science and Technology》 SCIE EI CAS CSCD 2010年第4期461-465,共5页
Diamond-like carbon (DLC) films was deposited successfully on stainless steel sub- strates with Si/SiC intermediate layers by combining plasma enhanced unbalanced magnetron sputtering physical vapor deposition (PEU... Diamond-like carbon (DLC) films was deposited successfully on stainless steel sub- strates with Si/SiC intermediate layers by combining plasma enhanced unbalanced magnetron sputtering physical vapor deposition (PEUMS-PVD) and microwave electron cyclotron resonance plasma enhanced chemical vapor deposition (MW-ECR PECVD) techniques. The effect of sil- icon dopant on the structure, morphology, nanomechanical properties and electrochemical be- havior of DLC films were investigated by Raman spectroscopy, nano-indentation, atomic force microscopy (AFM) and potentiodynamic method and electrochemical impedance spectroscopy (EIS). It showed that the incorporated silicon atoms substituted sp2-bonded carbon atoms in the ring structures, promoting the formation of sp3-bonds. The structural transition from C-C to C-Si bonds resulted in the relaxation of the residual stress, leading to the decrease in films hardness. The DLC films with Si/SiC intermediate layers led to significant improvement in the corrosion resistance of the stainless steel substrate due to effective isolation and good chemical inertness of the DLC films. 展开更多
关键词 PECVD diamond-like carbon (DLC) Si/SiC intermediate layers stainless steel substrates
下载PDF
Stress Study on CrN Thin Films with Different Thicknesses on Stainless Steel
5
作者 Di Fan Hao Lei +3 位作者 Chao-Qian Guo Dong-Li Qi Jun Gong Chao Sun 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2018年第3期329-336,共8页
The reliability of a substrate curvature-based stress measurement method for CrN thin films on substrate with fluctuant surface was discussed.The stress error led by the ignorance of substrate thermal deformation was ... The reliability of a substrate curvature-based stress measurement method for CrN thin films on substrate with fluctuant surface was discussed.The stress error led by the ignorance of substrate thermal deformation was studied.Results showed that this error could be as large as several hundred MPa under general deposition conditions.Stress in the CrN thin films with different thicknesses ranging from 110 to 330 nm on stainless steel was studied by this method,in comparison with conventional results on silicon wafer.The thin films' morphology and structure were investigated and related to the film stress.A significant result of the comparison is that stress evolution in the thin films on steel obviously differs from that on silicon wafer,not only because the two substrates have different coefficients of thermal expansion,which provokes thermal stress,but also the considerable discrepancy in the thin films' grain coarsening rate and structure that induce different intrinsic stresses. 展开更多
关键词 STRESS CrN film Magnetron sputtering Stoney equation steel substrate
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部