The gas in plastics mould has great influence on performance, appearance and lifespan of the injection molded parts. Venting channel and its appendix system should be used for gas exhausting in general. However, the d...The gas in plastics mould has great influence on performance, appearance and lifespan of the injection molded parts. Venting channel and its appendix system should be used for gas exhausting in general. However, the dependence on the venting system complicates the mould design. Furthermore in certain condition, it is difficult to integrate the venting system into the mould. Currently a kind of mold material which has gas permeability has been developed in abroad, but the applications of this mold material were restricted by its higher cost and smaller size. In this research, a porous material which was made by powder metallurgy was applied to plastic mould to replace the venting system. Permeability of the steel with different secondary processing was tested and compared with a special apparatus. The metallographic samples of the steel with different secondary processing were prepared and investigated. Finally an actual injection set was established to investigate the applications of permeable steel. The metallographies indicate that the micro-holes inside permeable steel were interconnected. Moulds made of permeable steel exhibit good permeability in the plastic-injection experiments and gas generated in the mould cavity was smoothly exhausted. The melted plastic did not penetrate into the mould or block in the micro-holes. After several times of plastic-injection experiments, the mould still retained good permeability. The strength of this permeable steel is between 200–250 MPa and suitable for industrial applications. The venting systems simplified by permeable steel in plastic-injection have simple structures, which can be applied into any place that requires gas exhausting.展开更多
The improvement of machining behavior of prehardened-mould steel for plastic is realized by using computer-aided composition design in this work. The results showed that the matrix composition of large sectional preha...The improvement of machining behavior of prehardened-mould steel for plastic is realized by using computer-aided composition design in this work. The results showed that the matrix composition of large sectional prehardened mould steel for plastic markedly influences the precipitation of non-metallic inclusion and the control of composition aided by Thermo-Calc software package minimizes the amount of detrimental oxide inclusion. In addition the modification of calcium is optimized in the light of composition design.展开更多
The material selected for this work was the spray formed Vanadis4 high alloy cold working mould steel (abbreviated to V4 steel). Its microstructure, hot rolling process, and annealing treatment have been investigate...The material selected for this work was the spray formed Vanadis4 high alloy cold working mould steel (abbreviated to V4 steel). Its microstructure, hot rolling process, and annealing treatment have been investigated. Observed from the optical and electron microscopes, the as-sprayed V4 steel had the finer microstructure of uniform and equiaxial grains ,while after hot rolling for densification and spheroidized annealing, the V4 steel obtained an excellent spheroidized structure that is favorable to subsequent quenching and tempering treatment. The spheroidized structure and level of annealed hardness of the V4 steel are almost the same as expensive imported powder metallurgy the V4 steel. It is difficult to produce V4 steel with the conventional ingot metallurgical technique, so the multi-step and high-cost powder metallurgy method is generally used at present. Compared to the powder metallurgy technique, using the spray forming technique to produce the V4 steel has obvious advantages and potential market competitiveness in reducing production costs, simplifying working process, and shortening the production cycle.展开更多
The present work investigated the solidification microstructure of AISI M2 high speed steel manufactured by different casting technologies, namely iron mould casting and continuous casting. The results revealed that t...The present work investigated the solidification microstructure of AISI M2 high speed steel manufactured by different casting technologies, namely iron mould casting and continuous casting. The results revealed that the as-cast structure of the steel was composed of the iron matrix and the M2C eutectic carbide networks, which were greatly refined in the ingot made by continuous casting process, compared with that by the iron mould casting process. M2C eutectic carbides presented variation in their morphologies and growth characteristics in the ingots by both casting methods. In the ingot by iron mould casting, they have a plate-like morphology and grow anisotropically. However, in the ingot made by continuous casting, the carbides evolved into the fiber-like shape that exhibited little characteristics of anisotropic growth. It was noticed that the fiber-like M2C was much easier to decompose and spheroidize after heated, as a result, the carbides refined remarkably, compared with the case of plate-like carbides in the iron mould casting ingot.展开更多
Thermodynamic and kinetic study on TRIP (transformation induced plasticity) steels, cemented carbides and mold steel for plastics were carried out in order to design modern advanced materials. With the sublattice mo...Thermodynamic and kinetic study on TRIP (transformation induced plasticity) steels, cemented carbides and mold steel for plastics were carried out in order to design modern advanced materials. With the sublattice model, equilibrium compositions of ferrite and austenite phases in TRIP steels, as well as volume fraction of austenite at inter-critical temperatures for different time were calculated. Concentration profiles of carbon, manganese, aluminum and silicon in the steels were also estimated in the lattice fixed frame of reference. The effect of Si and Mn on TRIP was discussed according to thermodynamic and kinetic analyses. In order to understand and produce the graded nanophase structure of cemented carbides, miscellaneous phases in the M-Co-C (M= Ti, Ta, Nh) systems and Co-V-C system were modeled. Solution parameters and thermodynamic: properties were listed in detail. The improvement of machining behavior of prehardened mould steel for plastics was obtained by computer-aided composition design. The results showed that the matrix composition of large-section prehardened mould steel for plastic markedly influences the precipitation of non-metallic inclusion and the composition control by the aid of Thermo-Calc software package minimizes the amount of detrimental oxide inclusion. In addition, the modification of calcium was optimized in composition design.展开更多
Knowledge of the mechanical properties of two-component parts is critical for engineering functionally graded components. In this study, mono-and two-component tensile test specimens were metal injection moulded. Thre...Knowledge of the mechanical properties of two-component parts is critical for engineering functionally graded components. In this study, mono-and two-component tensile test specimens were metal injection moulded. Three different weld line positions were generated in the two-component specimens. Linear shrinkage of the two-component specimens was greater than that of the mono-component specimens because the incompatibility of sintering shrinkage of both materials causes biaxial stresses and enhances sintering. The mechanical properties of 316L stainless steel were affected by the addition of a coloured pigment used to identify the weld line position after injection moulding. For the two-component specimens, the yield stress and ultimate tensile stress were similar to those of 316L stainless steel. Because 316L and 630(also known as 17-4PH) stainless steels were well-sintered at the interface, the mechanical properties of the weaker material(316L stainless steel) were dominant. However, the elongations of the two-component specimens were lower than those of the mono-component specimens. An interfacial zone with a microstructure that differed from those of the mono-material specimens was observed; its different microstructure was attributed to the gradual diffusion of nickel and copper.展开更多
To evaluate the bioeompatibility of MIM 316L stainless steel,the percentage of S-period cells were detected by flow cytometry after L929 incubated with extraction of MIM 316L stainless steel,using titanium implant mat...To evaluate the bioeompatibility of MIM 316L stainless steel,the percentage of S-period cells were detected by flow cytometry after L929 incubated with extraction of MIM 316L stainless steel,using titanium implant materials of clinical application as the contrast.Both materials were implanted in animal and the histopathological evaluations were carried out.The statistical analyses show that there are no significant differences between two groups(P>0.05),which demonstrates that MIM 316L stainless steel has a good biocompatibility.展开更多
基金supported by Guangdong-Hong Kong Key Project of China (Grant No. 2007Z010)National Basic Research Program of China (973 Program, Grant No. 2007CB616905)
文摘The gas in plastics mould has great influence on performance, appearance and lifespan of the injection molded parts. Venting channel and its appendix system should be used for gas exhausting in general. However, the dependence on the venting system complicates the mould design. Furthermore in certain condition, it is difficult to integrate the venting system into the mould. Currently a kind of mold material which has gas permeability has been developed in abroad, but the applications of this mold material were restricted by its higher cost and smaller size. In this research, a porous material which was made by powder metallurgy was applied to plastic mould to replace the venting system. Permeability of the steel with different secondary processing was tested and compared with a special apparatus. The metallographic samples of the steel with different secondary processing were prepared and investigated. Finally an actual injection set was established to investigate the applications of permeable steel. The metallographies indicate that the micro-holes inside permeable steel were interconnected. Moulds made of permeable steel exhibit good permeability in the plastic-injection experiments and gas generated in the mould cavity was smoothly exhausted. The melted plastic did not penetrate into the mould or block in the micro-holes. After several times of plastic-injection experiments, the mould still retained good permeability. The strength of this permeable steel is between 200–250 MPa and suitable for industrial applications. The venting systems simplified by permeable steel in plastic-injection have simple structures, which can be applied into any place that requires gas exhausting.
文摘The improvement of machining behavior of prehardened-mould steel for plastic is realized by using computer-aided composition design in this work. The results showed that the matrix composition of large sectional prehardened mould steel for plastic markedly influences the precipitation of non-metallic inclusion and the control of composition aided by Thermo-Calc software package minimizes the amount of detrimental oxide inclusion. In addition the modification of calcium is optimized in the light of composition design.
文摘The material selected for this work was the spray formed Vanadis4 high alloy cold working mould steel (abbreviated to V4 steel). Its microstructure, hot rolling process, and annealing treatment have been investigated. Observed from the optical and electron microscopes, the as-sprayed V4 steel had the finer microstructure of uniform and equiaxial grains ,while after hot rolling for densification and spheroidized annealing, the V4 steel obtained an excellent spheroidized structure that is favorable to subsequent quenching and tempering treatment. The spheroidized structure and level of annealed hardness of the V4 steel are almost the same as expensive imported powder metallurgy the V4 steel. It is difficult to produce V4 steel with the conventional ingot metallurgical technique, so the multi-step and high-cost powder metallurgy method is generally used at present. Compared to the powder metallurgy technique, using the spray forming technique to produce the V4 steel has obvious advantages and potential market competitiveness in reducing production costs, simplifying working process, and shortening the production cycle.
基金supported by the Fund Project for Transformation of Scientific and Technological Achievements of Jiangsu Province,China(No.BA2010139)
文摘The present work investigated the solidification microstructure of AISI M2 high speed steel manufactured by different casting technologies, namely iron mould casting and continuous casting. The results revealed that the as-cast structure of the steel was composed of the iron matrix and the M2C eutectic carbide networks, which were greatly refined in the ingot made by continuous casting process, compared with that by the iron mould casting process. M2C eutectic carbides presented variation in their morphologies and growth characteristics in the ingots by both casting methods. In the ingot by iron mould casting, they have a plate-like morphology and grow anisotropically. However, in the ingot made by continuous casting, the carbides evolved into the fiber-like shape that exhibited little characteristics of anisotropic growth. It was noticed that the fiber-like M2C was much easier to decompose and spheroidize after heated, as a result, the carbides refined remarkably, compared with the case of plate-like carbides in the iron mould casting ingot.
文摘Thermodynamic and kinetic study on TRIP (transformation induced plasticity) steels, cemented carbides and mold steel for plastics were carried out in order to design modern advanced materials. With the sublattice model, equilibrium compositions of ferrite and austenite phases in TRIP steels, as well as volume fraction of austenite at inter-critical temperatures for different time were calculated. Concentration profiles of carbon, manganese, aluminum and silicon in the steels were also estimated in the lattice fixed frame of reference. The effect of Si and Mn on TRIP was discussed according to thermodynamic and kinetic analyses. In order to understand and produce the graded nanophase structure of cemented carbides, miscellaneous phases in the M-Co-C (M= Ti, Ta, Nh) systems and Co-V-C system were modeled. Solution parameters and thermodynamic: properties were listed in detail. The improvement of machining behavior of prehardened mould steel for plastics was obtained by computer-aided composition design. The results showed that the matrix composition of large-section prehardened mould steel for plastic markedly influences the precipitation of non-metallic inclusion and the composition control by the aid of Thermo-Calc software package minimizes the amount of detrimental oxide inclusion. In addition, the modification of calcium was optimized in composition design.
基金co-funded by the National Metal and Materials Technology Center (MTEC),ThailandTaisei Kogyo (Thailand) Co.,Ltd.(grant number P1451042)
文摘Knowledge of the mechanical properties of two-component parts is critical for engineering functionally graded components. In this study, mono-and two-component tensile test specimens were metal injection moulded. Three different weld line positions were generated in the two-component specimens. Linear shrinkage of the two-component specimens was greater than that of the mono-component specimens because the incompatibility of sintering shrinkage of both materials causes biaxial stresses and enhances sintering. The mechanical properties of 316L stainless steel were affected by the addition of a coloured pigment used to identify the weld line position after injection moulding. For the two-component specimens, the yield stress and ultimate tensile stress were similar to those of 316L stainless steel. Because 316L and 630(also known as 17-4PH) stainless steels were well-sintered at the interface, the mechanical properties of the weaker material(316L stainless steel) were dominant. However, the elongations of the two-component specimens were lower than those of the mono-component specimens. An interfacial zone with a microstructure that differed from those of the mono-material specimens was observed; its different microstructure was attributed to the gradual diffusion of nickel and copper.
基金Project(2003AA302210)supported by the National Hi-tech Research Prograrm of Chinap.
文摘To evaluate the bioeompatibility of MIM 316L stainless steel,the percentage of S-period cells were detected by flow cytometry after L929 incubated with extraction of MIM 316L stainless steel,using titanium implant materials of clinical application as the contrast.Both materials were implanted in animal and the histopathological evaluations were carried out.The statistical analyses show that there are no significant differences between two groups(P>0.05),which demonstrates that MIM 316L stainless steel has a good biocompatibility.