Based on the experimental study and inelastic theory, the ultimate flexuralcapacity of steel encased concrete composite beams are derived. The difference between steel encasedconcrete composite beams with full shear c...Based on the experimental study and inelastic theory, the ultimate flexuralcapacity of steel encased concrete composite beams are derived. The difference between steel encasedconcrete composite beams with full shear connection and beams with partial shear connection,together with the relationship between the inelastic neutral axis of steel parts and concrete parts,are considered in the formulae. The calculation results of the eight specimens with full shearconnection and the three specimens with partial shear connection are in good agreement with theexperimental data, which validates the effectiveness and efficiency of the proposed calculationmethods. Furthermore, the nonlinear finite element analysis of the ultimate flexural capacity of thesteel encased concrete composite beams is performed. Nonlinear material properties and nonlinearcontact properties are considered in the finite element analysis. The finite element analyticalresults also correlate well with the experimental data.展开更多
In order to enhance the durability of steel encased concrete beams, a new type of steel reinforced engineered cementitious composite(SRECC) beam composed of steel shapes, steel bars and ECC is proposed. The theoretica...In order to enhance the durability of steel encased concrete beams, a new type of steel reinforced engineered cementitious composite(SRECC) beam composed of steel shapes, steel bars and ECC is proposed. The theoretical analyses of the SRECC beam including crack propagation and stress-strain distributions along the depth of the composite beam in different loading stages are conducted. A theoretical model and simplified design method are proposed to calculate the load carrying capacity. Based on the proposed theoretical model, the relationship between the moment and corresponding curvature is derived. The theoretical results are verified with the finite element analysis. Finally, an extensive parametric study is performed to study the effect of the matrix type, steel shape ratio, reinforced bar ratio, ECC compressive strength and ECC tensile ductility on the mechanical behavior of SRECC beams. The results show that substitution concrete with ECC can effectively improve the bearing capacity and ductility of composite beams. The steel shape and longitudinal reinforcement can enhance the loading carrying capacity, while the ductility decreases with the increase of steel shape ratio. ECC compressive strength has significant effects on both load carrying capacity and ductility, and changing the ultimate strain of ECC results in a very limited variation in the mechanical behavior of SRECC beams.展开更多
A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipat...A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements - the CFST columns and SP deep beams - to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.展开更多
Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of t...Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of the tensile steel tube is 0.252 during the using stage,and the average crack space of beams depends on the ratio of the sum of the bottom chord steel tube's outside diameter and the secondary bottom chord steel tube's section area to the effective tensile concrete area. The coefficient of uneven crack distribution is 1.68 and the formula for the calculation of crack width is established. Test results indicate that the ultimate stress increment of unbonded tendon in the beams decreases in linearity with the increase of the composite reinforcement index β0. The pure bending region of beams accords with the plane section assumption from loading to failure. The calculation formula of ultimate stress increment of the unbonded tendon and the method to calculate the bearing capacity of normal section of beams have been presented. Besides,the method to calculate the stiffness of this sort of beams is brought forward as well.展开更多
In order to investigate shear carrying capacity of H-steel concrete beam with small shear span ratio,shear test on 5 H-steel concrete composite beams with small span ratio (from 0.7 to 1.1) are reported,including test...In order to investigate shear carrying capacity of H-steel concrete beam with small shear span ratio,shear test on 5 H-steel concrete composite beams with small span ratio (from 0.7 to 1.1) are reported,including test design,test scheme,test method,failure characteristics and test results. Influences of shear span ratio,web of H steel and concrete on shear carrying capacity of this kind of beam are investigated. The main components comprising shear bearing capacity are analyzed. The results show that with the shear span ratio increasing,the contribution of web of H steel and concrete on shear carrying capacity decrease. Based on test data,the calculation formula of shear carrying capacity for this beam is established by curve fitting.展开更多
This work experimentally investigates the effects of shear stud characteristics on the interface slippage of steel-concrete composite push-out specimens. ABAQUS is used to establish a detailed 3D finite element(FE) mo...This work experimentally investigates the effects of shear stud characteristics on the interface slippage of steel-concrete composite push-out specimens. ABAQUS is used to establish a detailed 3D finite element(FE) model and analyze the behavior of push-out specimens. The modeling results are in good agreement with the experimental results. Based on parametrical analysis using the validated FE approaches, the effects of important design parameters, such as the diameter, number, length to diameter ratio, and yield strength of studs, concrete strength and steel transverse reinforcement ratio, on the load-slip relationship at the interface of composite beams are discussed. In addition, a simplified approach to model studs is developed using virtual springs with an equivalent stiffness. This approach is demonstrated to be able to predict the load-displacement response and ultimate bearing capacity of steel-concrete composite beams. The predicted results show satisfactory agreement with experimental results from the literature.展开更多
Cold-formed steel structures are steel structure products constructed from sheets or coils using cold rolling, press brake or bending brake method. These structures are extensively employed in building construction in...Cold-formed steel structures are steel structure products constructed from sheets or coils using cold rolling, press brake or bending brake method. These structures are extensively employed in building construction industry due to their light mass, ductility by economic cold forming operations, favorable strength-to-mass ratio and other factors. The utilization of cold formed steel sections with concrete as composite can hugely reduce the construction cost. However, the use of cold formed steel members in composite concrete beams has been very limited. A comprehensive review of developments in composite beam with cold formed steel sections was introduced. It was revealed that employing cold-formed steel channel section to replace reinforcement bars in conventional reinforced concrete beam results in a significant cost reduction without reducing strength capacity. The use of composite beam consisting of cold-formed steel open or close box and filled concrete could also reduce construction cost. Lighter composite girder for bridges with cold-formed steel of U section was introduced. Moreover, types of shear connectors to provide composite action between cold-formed steel beam and concrete slab were presented. However, further studies to investigate the effects of metal decking on the behavior of composite beam with cold-formed steel section and introduction of ductile shear connectors were recommended.展开更多
Through the experiments of 7 T-section composite beams, steel fiber reinforced self-stressing concrete (SFRSC) as the composite beam in the composite layer was studied under the hogging bending. The tests simulated ...Through the experiments of 7 T-section composite beams, steel fiber reinforced self-stressing concrete (SFRSC) as the composite beam in the composite layer was studied under the hogging bending. The tests simulated composite layer tensile strain under the hogging bending of inverted loading composite beams, giving the relationship under the different fatigue stress ratios between fatigue cycles and steel bar’s stress range, crack width, stiffness loss and damage, etc., in composite layer. This article established fatigue life equation, and analyzed SFRSC reinforced mechanism to crack width and stiffness loss. The results show that SFRSC as the composite beam concrete has excellent properties of crack resistance and tensile, can reinforce the fatigue crack width and stiffness loss of composite beams, and improve the durability and in normal use of composite beams in the hogging bending zone.展开更多
The design scheme of long span and low depth composite steel concrete beams is introduced, and the methods of avoiding the cracking of concrete deck in the negative moment regions are proposed. Moreover, significa...The design scheme of long span and low depth composite steel concrete beams is introduced, and the methods of avoiding the cracking of concrete deck in the negative moment regions are proposed. Moreover, significant exploration for problems of the composite beams has been made, such as optimizing construction steps to regulate the stress, applying jacking technique to exert prestress on the concrete deck, investigating the uplifting force principle of the shear connectors by means of model test and non linear finite element analysis, and pointing out the countermeasure to reduce tension force of the shear connectors.展开更多
A new type of semi-rigid thin-walled steel-concrete composite beam-to-column joint has been proposed in this paper.Five semi-rigid composite beam-to-column joint specimens subjected to hogging moments under monotonic ...A new type of semi-rigid thin-walled steel-concrete composite beam-to-column joint has been proposed in this paper.Five semi-rigid composite beam-to-column joint specimens subjected to hogging moments under monotonic loading were tested to study the static behavior of this new type of joint.The main variable parameters for the five joint specimens were the longitudinal reinforcement ratio and the joint type.The experimental results designated that the magnitude of extension of the longitudinal reinforcement is the most important factor that influenced the moment-rotation characteristic of the new type of joint.The concrete slabs could resist 3.8%-19.1% of the total shear load applied to the cross-sections near the beam-to-column connection.The edge stiffened elements,such as the flange of the lipped I-section thin-walled steel beam,were capable of having considerable inelastic deformation capacity although they had comparatively large width-to-thickness ratios.The shear failure of the concrete cantilever edge strip must be taken into account in practical design because it has significant influence on the anchorage of the longitudinal reinforcement in the new type of external joints.展开更多
This paper is concerned with a special steel-concrete composite beam in which the resisting system is a truss structure whose bottom chord is made of a steel plate supporting the precast floor system. This system work...This paper is concerned with a special steel-concrete composite beam in which the resisting system is a truss structure whose bottom chord is made of a steel plate supporting the precast floor system. This system works in two distinct phases with two different resisting mechanisms: during the construction phase, the truss structure bears the precast floor system and the resisting system is that of a simply supported steel truss;once the concrete has hardened, the truss structure becomes the reinforcing element of a steel-concrete composite beam, where it is also in a pre-stressed condition due to the loads carried before the hardening of concrete. Within this framework, the effects of the diagonal bars on the bending stiffness of this composite beam are investigated. First, a closed-form solution for the evaluation of the equivalent bending stiffness is derived. Subsequently, the influence of geometrical and mechanical characteristics of shear reinforcement is studied. Finally, results obtained from parametric and numerical analyses are discussed.展开更多
In this paper, a steel-concrete multi-energy dissipation composite shear wall, comprised of steel-reinforced concrete (SRC) columns, steel plate (SP) deep beams, a concrete wall and energy dissipation strips, is p...In this paper, a steel-concrete multi-energy dissipation composite shear wall, comprised of steel-reinforced concrete (SRC) columns, steel plate (SP) deep beams, a concrete wall and energy dissipation strips, is proposed. In order to study the multi-energy dissipation behavior and restorability after an earthquake, two stages of low cyclic loading tests were carded out on ten test specimens. In the first stage, test on five specimens with different number of SP deep beams was carried out, and the test lasted until the displacement drift reached 2%. In the second stage, thin SPs were welded to both sides of the five specimens tested in the first stage, and the same test was carried out on the repaired specimens (designated as new specimens). The load-bearing capacity, stiffness, ductility, hysteretic behavior and failure characteristics were analyzed for both stages and the results are discussed herein. Extrapolating from these results, strength calculation models and formulas are proposed herein and simulations using ABAQUS carried out, they show good agreement with the test results. The study demonstrates that SRC columns, SP deep beams, concrete wall and energy dissipation strips cooperate well and play an important role in energy dissipation. In addition, this study shows that the shear wall has good recoverability after an earthquake, and that the welding of thin SP's to repair a deformed wall is a practicable technique.展开更多
Steel-concrete composite frames are seeing increased use in earthquake region because of their excellent structural characteristics, including high strength, stiffness, and good ductility. However, there exist gaps in...Steel-concrete composite frames are seeing increased use in earthquake region because of their excellent structural characteristics, including high strength, stiffness, and good ductility. However, there exist gaps in the knowledge of seismic behavior and the design provisions for these structures. In order to better understand the seismic behaviors of composite frame systems, eight steel-concrete composite frames were designed. These composite frames were composed of steel-concrete composite beams and concrete filled steel tube columns. The axial compression ratio of column, slenderness ratio and linear stiffness ratio of beam to column were selected as main design parameters. The low reversed cyclic loading tests of composite frame system were carried out. Based on test results, the seismic behaviors of composite frames such as failure mode, hysteresis curve, strength degradation, rigidity degradation, ductility and energy dissipation were studied. Known from the test phenomenon, the main cause of damage is the out-of-plane deformation of steel beam and the yielding destruction of column heel. The hysteretic loops of composite frame appear a spindle shape and no obvious pinch phenomenon. The results demonstrate that this type of composite frame has favorable seismic behaviors. Furthermore, the effects of design parameters on seismic behaviors were also discussed. The results of the experiment show that the different design parameter has different influence rule on seismic behaviors of composite frame.展开更多
The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interfa...The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interface. Fatigue properties of the composite beam under the action of negative moment were experimentally studied. Through inverted loading mode the load-beating state of a composite beam was simulated under the action of negative moment. With the ratios of constructional bars being 0, 0.082% and 0.164% respectively as parameters, the effects of constructional bars on the properties of composite beam, such as fatigue life, crack propagation, rigidity loss as well as damage behavior of bonding interface, were studied. The mechanism of the constructional bars on the fatigue properties of the composite beams and the restriction mechanism of crack widths and rigidity loss were analyzed. The test results show that the constructional bars can enhance the shear resistance of the bonding interface between composite layer and old concrete beam and restrict expanding of steel fiber reinforced self-stressing concrete, which are beneficial to synergistic action of composite layer and old concrete beam, to reducing the stress amplitude of bars and the crack width of composite layer, and to increasing the durability and fatigue life of the composite beam.展开更多
So far, numerous numerical studies have been conducted on the behavior of Composite Reinforced Concrete-Steel (RCS) beam-to-column connections. However, the lack of studies regarding the steel joist-concrete girder ...So far, numerous numerical studies have been conducted on the behavior of Composite Reinforced Concrete-Steel (RCS) beam-to-column connections. However, the lack of studies regarding the steel joist-concrete girder connection has yet to be addressed through comprehensive finite element methods to get an understanding of influential parameters. Hence, in this paper, composite connection of embedded steel joist in concrete girder is investigated with an appropriate finite element software, namely, ABAQUS. The validity of the proposed model is examined by the comparison made with the test data in literature. Results indicate that maximum bending capacity of the connection is achieved when embedment ratio is 1.78. Moreover, double web angles in the embedment region significantly reduce the embedment length required to achieve the maximum bending capacity. Finally, damage analyses show that bending capacity of concrete girder is slightly reduced in the connection zone.展开更多
The objective of this work is to investigate the fatigue behavior of reinforced concrete(RC) beams strengthened with externally bonded carbon fiber reinforced polymer(CFRP) and steel plate. An experimental investigati...The objective of this work is to investigate the fatigue behavior of reinforced concrete(RC) beams strengthened with externally bonded carbon fiber reinforced polymer(CFRP) and steel plate. An experimental investigation and theoretical analysis were made on the law of deflection development and stiffness degradation, as well as the influence of fatigue load ranges. Test results indicate that the law of three-stage change under fatigue loading is followed by both midspan deflection and permanent deflection, which also have positive correlation with fatigue load amplitude. Fatigue stiffness of composite strengthened beams degrades gradually with the increasing of number of cycles. Based on the experimental results, a theoretical model by effective moment of inertia method is developed for calculating the sectional stiffness of such composite strengthened beams under fatigue loading, and the calculated results are in good agreement with the experimental results.展开更多
A model for predicting the interface behavior of epoxy asphalt and steel composite beam under negative bending is developed incorporating partial interaction theory. Interfacial slips between the steel deck and the ep...A model for predicting the interface behavior of epoxy asphalt and steel composite beam under negative bending is developed incorporating partial interaction theory. Interfacial slips between the steel deck and the epoxy asphalt surfacing are included in the model with a new parameter of membrane stiffness. A series of analytical equations based on this model are derived to calculate slip and strain at the interface. Also, a numerical procedure for calculating the load responses of simply supported composite beams with concentrated force at the mid-span is established and verified with two samples. Characters of slip and strain at the interface, sensitivities of tensile stress and interface shear stress with material parameters are studied. It can be concluded that interfacial effects decrease the bending stiffness of the composite; hard and stiff bonding material is better for asphalt surfacing layer working at normal to low temperatures, and the damage of the asphalt surfacing layer will be accelerated with the damage accumulation of the bonding coat.展开更多
While modem prestressed techniques have improved the torsion properties of high-strength concrete (HSC) composite beams with prestressed steel (PS) boxes, no research has been reported in either the national or in...While modem prestressed techniques have improved the torsion properties of high-strength concrete (HSC) composite beams with prestressed steel (PS) boxes, no research has been reported in either the national or international literature on the an- ti-torque and composite torque properties of this type of beam. With the aim of understanding the torque properties of these beams, this paper presents results of ten comprehensive tests; three of these were based on stirrup spacings and prestressing levels as the main parameters, while the other seven were based on torsional rates. The torsion tests were conducted on the re- sults which established several key parameters, including curves of constant torsion, strain curves of steel torsion, strain distri- bution of steel beams and concrete, curves of bending-moment and mid-span deflection, as well as cross strain distribution.The prestressing impact-factor method was adopted to deduce semiempirical equations for cracking torque in such composite beams. Furthermore, this involves the use of the equation of ultimate torque based on tress-model-theory of the distortion an- gle, the calculated results show good agreement with the measured values. In summary, this paper offers theoretical analysis for future applications of HSC composite beams with PS boxes, and provides both validation of the methods employed and a reference point for on-going research on composite beams and related anti-torque studies.展开更多
文摘Based on the experimental study and inelastic theory, the ultimate flexuralcapacity of steel encased concrete composite beams are derived. The difference between steel encasedconcrete composite beams with full shear connection and beams with partial shear connection,together with the relationship between the inelastic neutral axis of steel parts and concrete parts,are considered in the formulae. The calculation results of the eight specimens with full shearconnection and the three specimens with partial shear connection are in good agreement with theexperimental data, which validates the effectiveness and efficiency of the proposed calculationmethods. Furthermore, the nonlinear finite element analysis of the ultimate flexural capacity of thesteel encased concrete composite beams is performed. Nonlinear material properties and nonlinearcontact properties are considered in the finite element analysis. The finite element analyticalresults also correlate well with the experimental data.
基金The National Natural Science Foundation of China(No.51778183)the National Key Research and Development Program of China(No.2016YFC0701907)the Distinguished Young Scholar Foundation of Jiangsu Province(No.BK20160027)
文摘In order to enhance the durability of steel encased concrete beams, a new type of steel reinforced engineered cementitious composite(SRECC) beam composed of steel shapes, steel bars and ECC is proposed. The theoretical analyses of the SRECC beam including crack propagation and stress-strain distributions along the depth of the composite beam in different loading stages are conducted. A theoretical model and simplified design method are proposed to calculate the load carrying capacity. Based on the proposed theoretical model, the relationship between the moment and corresponding curvature is derived. The theoretical results are verified with the finite element analysis. Finally, an extensive parametric study is performed to study the effect of the matrix type, steel shape ratio, reinforced bar ratio, ECC compressive strength and ECC tensile ductility on the mechanical behavior of SRECC beams. The results show that substitution concrete with ECC can effectively improve the bearing capacity and ductility of composite beams. The steel shape and longitudinal reinforcement can enhance the loading carrying capacity, while the ductility decreases with the increase of steel shape ratio. ECC compressive strength has significant effects on both load carrying capacity and ductility, and changing the ultimate strain of ECC results in a very limited variation in the mechanical behavior of SRECC beams.
基金National Natural Science Foundation of China under Grant No.51148009National Natural Science Foundation of China under Grant No.50978005Project High-level Personnel in Beijing under Grant No.PHR20100502
文摘A composite shear wall concept based on concrete filled steel tube (CFST) columns and steel plate (SP) deep beams is proposed and examined in this study. The new wall is composed of three different energy dissipation elements: CFST columns; SP deep beams; and reinforced concrete (RC) strips. The RC strips are intended to allow the core structural elements - the CFST columns and SP deep beams - to work as a single structure to consume energy. Six specimens of different configurations were tested under cyclic loading. The resulting data are analyzed herein. In addition, numerical simulations of the stress and damage processes for each specimen were carried out, and simulations were completed for a range of location and span-height ratio variations for the SP beams. The simulations show good agreement with the test results. The core structure exhibits a ductile yielding mechanism characteristic of strong column-weak beam structures, hysteretic curves are plump and the composite shear wall exhibits several seismic defense lines. The deformation of the shear wall specimens with encased CFST column and SP deep beam design appears to be closer to that of entire shear walls. Establishing optimal design parameters for the configuration of SP deep beams is pivotal to the best seismic behavior of the wall. The new composite shear wall is therefore suitable for use in the seismic design of building structures.
文摘Tests of 4 simply supported unbonded prestressed truss concrete composite beams encased with circular steel tube were carried out. It is found that the ratio of the stress increment of the unbonded tendon to that of the tensile steel tube is 0.252 during the using stage,and the average crack space of beams depends on the ratio of the sum of the bottom chord steel tube's outside diameter and the secondary bottom chord steel tube's section area to the effective tensile concrete area. The coefficient of uneven crack distribution is 1.68 and the formula for the calculation of crack width is established. Test results indicate that the ultimate stress increment of unbonded tendon in the beams decreases in linearity with the increase of the composite reinforcement index β0. The pure bending region of beams accords with the plane section assumption from loading to failure. The calculation formula of ultimate stress increment of the unbonded tendon and the method to calculate the bearing capacity of normal section of beams have been presented. Besides,the method to calculate the stiffness of this sort of beams is brought forward as well.
基金Sponsored by the National Key Technologies R&D Program of China during the 11th Five-Year Plan Period (Grant No.2006BAJ03A10)"New Century Excellent Talents in University"Scheme (Grant No.290)+2 种基金the National Natural Science Foundation of China(Grant No.50178026)the Natural Science Foundation of Heilongjiang Province-General Project (Grant No.E200806)the Foundation of Harbin Program (Grant No.2005AFXXJ017)
文摘In order to investigate shear carrying capacity of H-steel concrete beam with small shear span ratio,shear test on 5 H-steel concrete composite beams with small span ratio (from 0.7 to 1.1) are reported,including test design,test scheme,test method,failure characteristics and test results. Influences of shear span ratio,web of H steel and concrete on shear carrying capacity of this kind of beam are investigated. The main components comprising shear bearing capacity are analyzed. The results show that with the shear span ratio increasing,the contribution of web of H steel and concrete on shear carrying capacity decrease. Based on test data,the calculation formula of shear carrying capacity for this beam is established by curve fitting.
基金Project(2011BAJ09B02)supported by the National Key Technology R&D Program,ChinaProjects(51578548,51378511,51678576)supported by the National Natural Science Foundation of China
文摘This work experimentally investigates the effects of shear stud characteristics on the interface slippage of steel-concrete composite push-out specimens. ABAQUS is used to establish a detailed 3D finite element(FE) model and analyze the behavior of push-out specimens. The modeling results are in good agreement with the experimental results. Based on parametrical analysis using the validated FE approaches, the effects of important design parameters, such as the diameter, number, length to diameter ratio, and yield strength of studs, concrete strength and steel transverse reinforcement ratio, on the load-slip relationship at the interface of composite beams are discussed. In addition, a simplified approach to model studs is developed using virtual springs with an equivalent stiffness. This approach is demonstrated to be able to predict the load-displacement response and ultimate bearing capacity of steel-concrete composite beams. The predicted results show satisfactory agreement with experimental results from the literature.
文摘Cold-formed steel structures are steel structure products constructed from sheets or coils using cold rolling, press brake or bending brake method. These structures are extensively employed in building construction industry due to their light mass, ductility by economic cold forming operations, favorable strength-to-mass ratio and other factors. The utilization of cold formed steel sections with concrete as composite can hugely reduce the construction cost. However, the use of cold formed steel members in composite concrete beams has been very limited. A comprehensive review of developments in composite beam with cold formed steel sections was introduced. It was revealed that employing cold-formed steel channel section to replace reinforcement bars in conventional reinforced concrete beam results in a significant cost reduction without reducing strength capacity. The use of composite beam consisting of cold-formed steel open or close box and filled concrete could also reduce construction cost. Lighter composite girder for bridges with cold-formed steel of U section was introduced. Moreover, types of shear connectors to provide composite action between cold-formed steel beam and concrete slab were presented. However, further studies to investigate the effects of metal decking on the behavior of composite beam with cold-formed steel section and introduction of ductile shear connectors were recommended.
基金Project supported by the Science and Technology of Department of Communications of Liaoning Province (Grant No.200514)the Science and Technology of Department of Education of Liaoning Province (Grant No.L2010378)
文摘Through the experiments of 7 T-section composite beams, steel fiber reinforced self-stressing concrete (SFRSC) as the composite beam in the composite layer was studied under the hogging bending. The tests simulated composite layer tensile strain under the hogging bending of inverted loading composite beams, giving the relationship under the different fatigue stress ratios between fatigue cycles and steel bar’s stress range, crack width, stiffness loss and damage, etc., in composite layer. This article established fatigue life equation, and analyzed SFRSC reinforced mechanism to crack width and stiffness loss. The results show that SFRSC as the composite beam concrete has excellent properties of crack resistance and tensile, can reinforce the fatigue crack width and stiffness loss of composite beams, and improve the durability and in normal use of composite beams in the hogging bending zone.
文摘The design scheme of long span and low depth composite steel concrete beams is introduced, and the methods of avoiding the cracking of concrete deck in the negative moment regions are proposed. Moreover, significant exploration for problems of the composite beams has been made, such as optimizing construction steps to regulate the stress, applying jacking technique to exert prestress on the concrete deck, investigating the uplifting force principle of the shear connectors by means of model test and non linear finite element analysis, and pointing out the countermeasure to reduce tension force of the shear connectors.
基金Sponsored by the National Natural Science Foundation of China (Grant No.50478027)
文摘A new type of semi-rigid thin-walled steel-concrete composite beam-to-column joint has been proposed in this paper.Five semi-rigid composite beam-to-column joint specimens subjected to hogging moments under monotonic loading were tested to study the static behavior of this new type of joint.The main variable parameters for the five joint specimens were the longitudinal reinforcement ratio and the joint type.The experimental results designated that the magnitude of extension of the longitudinal reinforcement is the most important factor that influenced the moment-rotation characteristic of the new type of joint.The concrete slabs could resist 3.8%-19.1% of the total shear load applied to the cross-sections near the beam-to-column connection.The edge stiffened elements,such as the flange of the lipped I-section thin-walled steel beam,were capable of having considerable inelastic deformation capacity although they had comparatively large width-to-thickness ratios.The shear failure of the concrete cantilever edge strip must be taken into account in practical design because it has significant influence on the anchorage of the longitudinal reinforcement in the new type of external joints.
文摘This paper is concerned with a special steel-concrete composite beam in which the resisting system is a truss structure whose bottom chord is made of a steel plate supporting the precast floor system. This system works in two distinct phases with two different resisting mechanisms: during the construction phase, the truss structure bears the precast floor system and the resisting system is that of a simply supported steel truss;once the concrete has hardened, the truss structure becomes the reinforcing element of a steel-concrete composite beam, where it is also in a pre-stressed condition due to the loads carried before the hardening of concrete. Within this framework, the effects of the diagonal bars on the bending stiffness of this composite beam are investigated. First, a closed-form solution for the evaluation of the equivalent bending stiffness is derived. Subsequently, the influence of geometrical and mechanical characteristics of shear reinforcement is studied. Finally, results obtained from parametric and numerical analyses are discussed.
基金Beijing Natural Science Foundation of China under Grant No.8122004the National Natural Science Foundation of China under Grant No.51178010the National Science and Technology Support Program of China under Grant No.2012BAJ13B02
文摘In this paper, a steel-concrete multi-energy dissipation composite shear wall, comprised of steel-reinforced concrete (SRC) columns, steel plate (SP) deep beams, a concrete wall and energy dissipation strips, is proposed. In order to study the multi-energy dissipation behavior and restorability after an earthquake, two stages of low cyclic loading tests were carded out on ten test specimens. In the first stage, test on five specimens with different number of SP deep beams was carried out, and the test lasted until the displacement drift reached 2%. In the second stage, thin SPs were welded to both sides of the five specimens tested in the first stage, and the same test was carried out on the repaired specimens (designated as new specimens). The load-bearing capacity, stiffness, ductility, hysteretic behavior and failure characteristics were analyzed for both stages and the results are discussed herein. Extrapolating from these results, strength calculation models and formulas are proposed herein and simulations using ABAQUS carried out, they show good agreement with the test results. The study demonstrates that SRC columns, SP deep beams, concrete wall and energy dissipation strips cooperate well and play an important role in energy dissipation. In addition, this study shows that the shear wall has good recoverability after an earthquake, and that the welding of thin SP's to repair a deformed wall is a practicable technique.
基金Project(12K104)supported by Scientific Research Fund of Hunan Provincial Education DepartmentChina+1 种基金Project(E51254)supported by Scientific Research Foundation for the Doctoral Program of Hunan University of Science and TechnologyChina
文摘Steel-concrete composite frames are seeing increased use in earthquake region because of their excellent structural characteristics, including high strength, stiffness, and good ductility. However, there exist gaps in the knowledge of seismic behavior and the design provisions for these structures. In order to better understand the seismic behaviors of composite frame systems, eight steel-concrete composite frames were designed. These composite frames were composed of steel-concrete composite beams and concrete filled steel tube columns. The axial compression ratio of column, slenderness ratio and linear stiffness ratio of beam to column were selected as main design parameters. The low reversed cyclic loading tests of composite frame system were carried out. Based on test results, the seismic behaviors of composite frames such as failure mode, hysteresis curve, strength degradation, rigidity degradation, ductility and energy dissipation were studied. Known from the test phenomenon, the main cause of damage is the out-of-plane deformation of steel beam and the yielding destruction of column heel. The hysteretic loops of composite frame appear a spindle shape and no obvious pinch phenomenon. The results demonstrate that this type of composite frame has favorable seismic behaviors. Furthermore, the effects of design parameters on seismic behaviors were also discussed. The results of the experiment show that the different design parameter has different influence rule on seismic behaviors of composite frame.
基金Project(50578027) supported by the National Natural Science Foundation of China
文摘The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interface. Fatigue properties of the composite beam under the action of negative moment were experimentally studied. Through inverted loading mode the load-beating state of a composite beam was simulated under the action of negative moment. With the ratios of constructional bars being 0, 0.082% and 0.164% respectively as parameters, the effects of constructional bars on the properties of composite beam, such as fatigue life, crack propagation, rigidity loss as well as damage behavior of bonding interface, were studied. The mechanism of the constructional bars on the fatigue properties of the composite beams and the restriction mechanism of crack widths and rigidity loss were analyzed. The test results show that the constructional bars can enhance the shear resistance of the bonding interface between composite layer and old concrete beam and restrict expanding of steel fiber reinforced self-stressing concrete, which are beneficial to synergistic action of composite layer and old concrete beam, to reducing the stress amplitude of bars and the crack width of composite layer, and to increasing the durability and fatigue life of the composite beam.
文摘So far, numerous numerical studies have been conducted on the behavior of Composite Reinforced Concrete-Steel (RCS) beam-to-column connections. However, the lack of studies regarding the steel joist-concrete girder connection has yet to be addressed through comprehensive finite element methods to get an understanding of influential parameters. Hence, in this paper, composite connection of embedded steel joist in concrete girder is investigated with an appropriate finite element software, namely, ABAQUS. The validity of the proposed model is examined by the comparison made with the test data in literature. Results indicate that maximum bending capacity of the connection is achieved when embedment ratio is 1.78. Moreover, double web angles in the embedment region significantly reduce the embedment length required to achieve the maximum bending capacity. Finally, damage analyses show that bending capacity of concrete girder is slightly reduced in the connection zone.
基金Project(51108355)supported by the National Natural Science Foundation of ChinaProject(2011CDB269)supported by the Natural Science Foundation of Hubei Province,China
文摘The objective of this work is to investigate the fatigue behavior of reinforced concrete(RC) beams strengthened with externally bonded carbon fiber reinforced polymer(CFRP) and steel plate. An experimental investigation and theoretical analysis were made on the law of deflection development and stiffness degradation, as well as the influence of fatigue load ranges. Test results indicate that the law of three-stage change under fatigue loading is followed by both midspan deflection and permanent deflection, which also have positive correlation with fatigue load amplitude. Fatigue stiffness of composite strengthened beams degrades gradually with the increasing of number of cycles. Based on the experimental results, a theoretical model by effective moment of inertia method is developed for calculating the sectional stiffness of such composite strengthened beams under fatigue loading, and the calculated results are in good agreement with the experimental results.
基金The National Natural Science Foundation of China(No50578038)
文摘A model for predicting the interface behavior of epoxy asphalt and steel composite beam under negative bending is developed incorporating partial interaction theory. Interfacial slips between the steel deck and the epoxy asphalt surfacing are included in the model with a new parameter of membrane stiffness. A series of analytical equations based on this model are derived to calculate slip and strain at the interface. Also, a numerical procedure for calculating the load responses of simply supported composite beams with concentrated force at the mid-span is established and verified with two samples. Characters of slip and strain at the interface, sensitivities of tensile stress and interface shear stress with material parameters are studied. It can be concluded that interfacial effects decrease the bending stiffness of the composite; hard and stiff bonding material is better for asphalt surfacing layer working at normal to low temperatures, and the damage of the asphalt surfacing layer will be accelerated with the damage accumulation of the bonding coat.
基金supported by the National Natural Science Foundation of China (Grant No. 50879048)"948" Project of the Ministry of Water Resources of China (Grant No. 201127)
文摘While modem prestressed techniques have improved the torsion properties of high-strength concrete (HSC) composite beams with prestressed steel (PS) boxes, no research has been reported in either the national or international literature on the an- ti-torque and composite torque properties of this type of beam. With the aim of understanding the torque properties of these beams, this paper presents results of ten comprehensive tests; three of these were based on stirrup spacings and prestressing levels as the main parameters, while the other seven were based on torsional rates. The torsion tests were conducted on the re- sults which established several key parameters, including curves of constant torsion, strain curves of steel torsion, strain distri- bution of steel beams and concrete, curves of bending-moment and mid-span deflection, as well as cross strain distribution.The prestressing impact-factor method was adopted to deduce semiempirical equations for cracking torque in such composite beams. Furthermore, this involves the use of the equation of ultimate torque based on tress-model-theory of the distortion an- gle, the calculated results show good agreement with the measured values. In summary, this paper offers theoretical analysis for future applications of HSC composite beams with PS boxes, and provides both validation of the methods employed and a reference point for on-going research on composite beams and related anti-torque studies.