期刊文献+
共找到1,225篇文章
< 1 2 62 >
每页显示 20 50 100
Experimental study on box shape steel reinforced concrete beam 被引量:3
1
作者 杨春 蔡健 《Journal of Southeast University(English Edition)》 EI CAS 2005年第4期463-468,共6页
Experimental study on the fundamental behavior of box shape steel reinforced concrete (SRC) beams was conducted. Seven 1 : 3 scale model SRC beams were tested to failure. The experimental results indicate that the ... Experimental study on the fundamental behavior of box shape steel reinforced concrete (SRC) beams was conducted. Seven 1 : 3 scale model SRC beams were tested to failure. The experimental results indicate that the flexural strength increases with the increase of the ratio of flexural reinforcement and the thickness of flange of the shape steel; the shear strength increases with the increase in the thickness of the web of the shape steel. Concrete filled in the box shape steel can prevent the early failure of specimens due to the buckling of the box shape steel, and increase the ultimate load. Measures should be made to strengthen the connection and co-work between the shape steel and the concrete. Formulae for flexural and shear strength of the composite beams are proposed, and the calculated results are in good agreement with the experimental results. In general, the box shape SRC beam is a kind of ductile member, and it is suitable for extensive engineering application. 展开更多
关键词 steel reinforced concrete src experimental study ultimate strength box shape steel
下载PDF
Structural Behavior of Continuous Prestressed Steel Fiber Reinforced High Strength Concrete Beam 被引量:2
2
作者 刘海波 向天宇 赵人达 《Journal of Southwest Jiaotong University(English Edition)》 2008年第1期37-45,共9页
The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestre... The flexural behaviors of continuous fully and partially prestressed steel fiber reinforced high strength concrete beams are studied by experiment and nonlinear finite element analysis. Three levels of partial prestress ratio (PPR) are considered, and three pairs of two-span continuous beams with box sections varying in size are designed. The major parameters involved in the study include the PPR and the fiber location. It is concluded that the prestressed high strength concrete beam exhibits satisfactory ductility; the influences of steel fiber on the crack behaviors for partially prestressed beams are not as obvious as those for fully prestressed ones; steel fibers can improve the structural stiffness after cracking for fully prestressed high strength concrete beams; the moment redistribution from mid-span to intermediate support in the first stage should be mainly considered in practical design. 展开更多
关键词 High strength concrete steel fiber reinforced concrete Prestressed concrete Continuous beam
下载PDF
Seismic Behaviour of Beam-Column Joints of Precast and Partial Steel Reinforced Concrete 被引量:1
3
作者 Wanpeng Cheng Licheng Wang +1 位作者 Yupu Song Jun Wang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2015年第2期108-117,共10页
A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is locate... A beam-column joint of precast and partial steel reinforced concrete( PPSRC) is proposed for precast reinforced concrete frames. The PPSRC consists of partial steel and reinforced concrete. The partial steel is located in the core joint region and the connections between concrete members. This paper presents an experimental study of a series of PPSRC specimens. These specimens are tested under low cyclic loading.Experimental results demonstrate that the bearing capacity of the PPSRC specimens is 3 times that of the ordinary reinforced concrete( RC) beam-column joints. The strength and stiffness degradation rates are slower compared with that of the RC beam-column joints. In addition,the strength of the core joint region and the connections is higher than other parts of the PPSRC specimens. Beam failure occurs firstly for the PPSRC specimens,followed by column failure and connections failure. The failure of the core joint region occurs finally.Test results show that the seismic performance of the PPSRC is better than that of the ordinary RC beam-column joints. 展开更多
关键词 preeast and partial steel reinforced concrete (PPsrc beam-column joints low cyclic test hysteretic curve degradations of strength and stiffness DUCTILITY
下载PDF
Nonlinear Finite Element Analysis of Steel Fiber Reinforced Concrete Deep Beams
4
作者 XU Lihua CHI Yin +1 位作者 SU Jie XIA Dongtao 《Wuhan University Journal of Natural Sciences》 CAS 2008年第2期201-206,共6页
By the nonlinear finite element analysis (FEA) method, the mechanical properties of the steel fiber reinforced concrete (SFRC) deep beams were discussed in terms of the crack load and ultimate bearing capacity. In... By the nonlinear finite element analysis (FEA) method, the mechanical properties of the steel fiber reinforced concrete (SFRC) deep beams were discussed in terms of the crack load and ultimate bearing capacity. In the simulation process, the ANSYS parametric design language (APDL) was used to set up the finite element model; the model of bond stress-slip relationship between steel bar and concrete was established. The nonlinear FEA results and test results demonstrated that the steel fiber can not only significantly improve the cracking load and ultimate bearing capacity of the concrete but also repress the development of the cracks. Meanwhile, good agreement was found between the experimental data and FEA results, if the unit type, the parameter model and the failure criterion are selected reasonably. 展开更多
关键词 steel fiber reinforced concrete deep beam nonlinear finite element bond stress-slip relationship
下载PDF
Fatigue tests of composite beam by steel fiber reinforced self-stressing concrete in the hogging bending
5
作者 胡铁明 黄承逵 +1 位作者 梁振宇 陈小锋 《Journal of Shanghai University(English Edition)》 CAS 2010年第6期430-436,共7页
Through the experiments of 7 T-section composite beams, steel fiber reinforced self-stressing concrete (SFRSC) as the composite beam in the composite layer was studied under the hogging bending. The tests simulated ... Through the experiments of 7 T-section composite beams, steel fiber reinforced self-stressing concrete (SFRSC) as the composite beam in the composite layer was studied under the hogging bending. The tests simulated composite layer tensile strain under the hogging bending of inverted loading composite beams, giving the relationship under the different fatigue stress ratios between fatigue cycles and steel bar’s stress range, crack width, stiffness loss and damage, etc., in composite layer. This article established fatigue life equation, and analyzed SFRSC reinforced mechanism to crack width and stiffness loss. The results show that SFRSC as the composite beam concrete has excellent properties of crack resistance and tensile, can reinforce the fatigue crack width and stiffness loss of composite beams, and improve the durability and in normal use of composite beams in the hogging bending zone. 展开更多
关键词 steel fiber reinforced self-stressing concrete (SFRSC) composite beam hogging bending FATIGUE
下载PDF
Experimental Study on Force Behavior of Steel Rein forced Concrete Transfer Beam Structure with Basement of Large Space
6
作者 梁书亭 蒋永生 +1 位作者 马辉 刘美景 《Journal of Southeast University(English Edition)》 EI CAS 1998年第2期67-72,共6页
Based on comparative test of two transfer story models, in one of which the transfer beam and basement column is constructed of steel reinforced concrete, and the other is constructed of ordinary reinforced concrete, ... Based on comparative test of two transfer story models, in one of which the transfer beam and basement column is constructed of steel reinforced concrete, and the other is constructed of ordinary reinforced concrete, its force behavior, ductility and failure mechanism under vertical and horizontal loads are studied. The results show that loading bearing and seismic behavior of transfer story structure with steel reinforced concrete beam and basement column is good. The relative design suggestion is put forward. 展开更多
关键词 steel reinforced concrete transfer beam loading bearing behavior DUCTILITY failure mechanism
下载PDF
基于构件性能的SRC框架结构抗震性能评估研究
7
作者 王秋维 梁林 +1 位作者 王璐 续强 《世界地震工程》 北大核心 2024年第4期51-61,共11页
针对位移抗震性能设计的不足,现行规范采用构件损伤程度补充评估结构的抗震性能,但对于型钢混凝土(steel reinforced concrete,SRC)框架结构,其在各性能水平下的损伤构件比例未有明确规定。在此背景下,提出了SRC框架的构件性能状态与结... 针对位移抗震性能设计的不足,现行规范采用构件损伤程度补充评估结构的抗震性能,但对于型钢混凝土(steel reinforced concrete,SRC)框架结构,其在各性能水平下的损伤构件比例未有明确规定。在此背景下,提出了SRC框架的构件性能状态与结构性能水准的对应关系,建立了基于构件性能的SRC框架结构抗震性能评估方法。对不同高度和抗震设防烈度的SRC框架结构模型进行增量动力分析(incremental dynamic analysis,IDA),明确了结构的层间位移角和构件损伤分布,通过统计多条地震波下结构不同极限状态的构件破坏比例,建立用于体型规则SRC框架结构抗震评估的构件性能指标,并进一步采用地震易损性分析对结构抗震性能进行了评估。 展开更多
关键词 型钢混凝土(src) 框架结构 基于构件性能 增量动力分析(IDA) 抗震性能评估
下载PDF
Behavior of reinforced concrete beams and columns subjected to blast loading 被引量:9
8
作者 Yan Liu Jun-bo Yan Feng-lei Huang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第5期550-559,共10页
In this study, the blast performance of steel reinforced concrete(RC) beams was experimentally and analytically investigated. The experiment consists of a total of 10 one-half-scale beams subjected to different levels... In this study, the blast performance of steel reinforced concrete(RC) beams was experimentally and analytically investigated. The experiment consists of a total of 10 one-half-scale beams subjected to different levels of blast loading using live explosives. The reflected pressure-time histories were recorded and different damage levels and modes were observed. The blast resilience of the damaged beams was quantified by measuring the time-dependent displacements. Experiment results show that the damage in steel reinforced concrete beams with higher explosive mass is enhanced compared with that of the beams with smaller explosive mass at the same scaled distance. Based on the experiment data, an empirical expression is developed via dimensional analysis to correct the relationship between the midspan displacement and scaled distance. Besides, a complex single degree of freedom model(SDOF)incorporating complex features of the material behavior, high strain-rate effect and the column geometry was proposed and validated by test results. 展开更多
关键词 BLAST steel reinforced concrete beamS Dynamic response SCALING SDOF
下载PDF
Research on Flexural Behavior of Coral Aggregate Reinforced Concrete Beams 被引量:9
9
作者 MA Hai-yan DA Bo +1 位作者 YU Hong-fa WU Zhang-yu 《China Ocean Engineering》 SCIE EI CSCD 2018年第5期593-604,共12页
Through the flexural behavior test of coral aggregate reinforced concrete beams(CARCB) and ordinary Portland reinforced concrete beams(OPRCB), and based on the parameters of concrete types, concrete strength grades an... Through the flexural behavior test of coral aggregate reinforced concrete beams(CARCB) and ordinary Portland reinforced concrete beams(OPRCB), and based on the parameters of concrete types, concrete strength grades and reinforcement ratios, the crack development, failure mode, midspan deflection and flexural capacity were studied, the relationships of bending moment-midspan deflection, load-longitudinal tensile reinforcement strain, load-maximum crack width were established, and a calculation model for the flexural capacity of CARCB was suggested. The results showed that with the increase in the reinforcement ratio and concrete strength grade, the crack bending moment(Mcr)and ultimate bending moment(Mu) of CARCB gradually increased. The characteristics of CARCB and OPRCB are basically the same. Furthermore, through increasing the concrete strength grade and reinforcement ratio, Mcr/Mu could be increased to delay the cracking of CARCB. As the load increased, crack width(w) would also increase. At the beginning of the loading, w increased slowly. And then it increased rapidly when the load reached to the ultimate load, which then led to beam failure. Meanwhile, with a comprehensive consideration of the effects of steel corrosion on the loss of steel section and the decrease of steel yield strength, a more reasonable calculation model for the flexural capacity of CARCB was proposed. 展开更多
关键词 coral aggregate reinforced concrete beam flexural behavior steel corrosion reinforcement ratio concrete strength calculation model
下载PDF
Experimental and Numerical Analysis of High-Strength Concrete Beams Including Steel Fibers and Large-Particle Recycled Coarse Aggregates 被引量:3
10
作者 Chunyang Liu Yangyang Wu +1 位作者 Yingqi Gao Zhenyun Tang 《Fluid Dynamics & Materials Processing》 EI 2021年第5期947-958,共12页
In order to study the performances of high-strength concrete beams including steel fibers and large-particle recycled aggregates,four different beams have been designed,tested experimentally and simulated numerically.... In order to study the performances of high-strength concrete beams including steel fibers and large-particle recycled aggregates,four different beams have been designed,tested experimentally and simulated numerically.As varying parameters,the replacement rates of recycled coarse aggregates and CFRP(carbon fiber reinforced polymer)sheets have been considered.The failure mode of these beams,related load deflection curves,stirrup strain and shear capacity have been determined through monotonic loading tests.The simulations have been conducted using the ABAQUS finite element software.The results show that the shear failure mode of recycled concrete beams is similar to that of ordinary concrete beams.The shear carrying capacity of high-strength concrete beams including steel fibers and large-particle recycled coarse aggregates grows with an increase in the replacement rate of recycled coarse aggregates.Reinforcement with CFRP sheets can significantly improve the beam’s shear carrying capacity and overall resistance to deformation. 展开更多
关键词 High-strength recycled concrete beam steel fiber large-particle recycled aggregates pre-damage reinforcement numerical simulation carrying capacity calculation
下载PDF
Research on Bond-Slip Constitutive Relation for Steel Reinforced Concrete Members 被引量:1
11
作者 梁斌 孟凡深 刘俊玲 《Journal of Beijing Institute of Technology》 EI CAS 2009年第2期152-156,共5页
The constitutive relation of bond-slip on steel and concrete interface is proposed for short steel reinforced concrete (SRC) column. Based on the experimental research on bond-slip performance, a mechanical model of... The constitutive relation of bond-slip on steel and concrete interface is proposed for short steel reinforced concrete (SRC) column. Based on the experimental research on bond-slip performance, a mechanical model of short SRC column in pulling or pushing test is established. By means of the elasto-plasticity theory the explicit formulation of bond-slip constitutive relation τ-s in different anchor-hold place of push and pull member is investigated under the conditions of balance and boundary. The study shows that the constitutive relation is relevant to the embedment length and the thickness of concrete cover. The results are continuous descriptions of bond-slip constitutive relation and can be used to analyze the non-linear performance of SRC members. Results indicate that the principle of the method is correct and it performs well for short SRC column. 展开更多
关键词 steel reinforced concrete src BOND-SLIP constitutive relation pushing and pull member
下载PDF
Seismic performance of steel reinforced ultra high-strength concrete composite frame joints 被引量:5
12
作者 Yan Changwang Jia Jinqing 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2010年第3期439-448,共10页
To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens... To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications. 展开更多
关键词 cyclical test axial load ratio volumetric stirrup ratio DUCTILITY strength degradation stiffness degradation steel reinforced ultra high strength concrete beam-column joint
下载PDF
Fatigue properties of special kind of reinforced concrete composite beams
13
作者 胡铁明 黄承逵 陈小锋 《Journal of Central South University》 SCIE EI CAS 2010年第1期142-149,共8页
The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interfa... The special reinforced concrete composite beam consists of a steel fiber reinforced self-stressing concrete composite layer and a reinforced concrete T-beam, and constructional bars are set up at their bonding interface. Fatigue properties of the composite beam under the action of negative moment were experimentally studied. Through inverted loading mode the load-beating state of a composite beam was simulated under the action of negative moment. With the ratios of constructional bars being 0, 0.082% and 0.164% respectively as parameters, the effects of constructional bars on the properties of composite beam, such as fatigue life, crack propagation, rigidity loss as well as damage behavior of bonding interface, were studied. The mechanism of the constructional bars on the fatigue properties of the composite beams and the restriction mechanism of crack widths and rigidity loss were analyzed. The test results show that the constructional bars can enhance the shear resistance of the bonding interface between composite layer and old concrete beam and restrict expanding of steel fiber reinforced self-stressing concrete, which are beneficial to synergistic action of composite layer and old concrete beam, to reducing the stress amplitude of bars and the crack width of composite layer, and to increasing the durability and fatigue life of the composite beam. 展开更多
关键词 steel fiber reinforced self-stressing concrete composite beam constructional bar bonding interface FATIGUE
下载PDF
Durability of Reinforced Concrete Beams under Simultaneous Flexural Load in Corrosive Environment
14
作者 Loukas Karavokyros George Batis +2 位作者 Nikolaos Katsiotis Emmanouil Tzanis Margarita Beazi-Katsioti 《Journal of Materials Science and Chemical Engineering》 2020年第4期32-45,共14页
The deterioration of concrete over time is the result of various mechanical, physical, chemical and biological processes, with the corrosion of reinforcement being the most serious problem of durability of reinforced ... The deterioration of concrete over time is the result of various mechanical, physical, chemical and biological processes, with the corrosion of reinforcement being the most serious problem of durability of reinforced concrete structures. Over the last 50 years, a tremendous effort has been spent by the international scientific community with laboratory research and experimental field studies in order to increase the resistance of concrete over corrosion. This paper presents an experimental study of the corrosion behaviour of reinforced concrete beams with simultaneous sustained flexural loading. For this purpose, 40 reinforced concrete beams of 5 different compositions were constructed and exposed in simulated harmful environmental conditions in 3 different stress ratios for a total period of 42 months. Their behavior against corrosion was determined via regular measurements of the electrical resistance of concrete (according to ASTM G57) and the corrosion potential of the steel-reinforced bars with the use of copper sulphate (CSE) as reference electrode (according to ASTM C876). A theoretical calculation of the corrosion rate was conducted based on the electrochemical measurements of the beams. The results indicate that the corrosion potential of steel decreased in time and more rapidly after the initiation of the corrosion process;the electrical resistance firstly increased, remained stable for a short period and then decreased with the corrosion development, as expected. An inversely proportional relationship of the water/cement ratio of a composition with its corrosion behaviour as well as an analogous relationship between the cement content of a composition and its corrosion behaviour was observed. Also, the corrosion rate of steel is increased gradually with increasing load. 展开更多
关键词 reinforced concrete beamS steel CORROSION CORROSION INHIBITOR ELECTROCHEMICAL Measurements
下载PDF
SRC框架梁正截面受弯极限弯矩计算式及其适用条件研究 被引量:1
15
作者 刘占科 莫党生 +1 位作者 张润雅 宋诗羽 《建筑结构》 北大核心 2023年第S01期1860-1866,共7页
检验设计标准中设计公式的计算精度及其适用条件是结构工程的重要研究内容之一。为检验现行行业标准《组合结构设计规范》(JGJ138-2016)中SRC框架梁正截面受弯极限弯矩计算式的适用范围及其计算精度,将该标准中的5条基本假定表示成数学... 检验设计标准中设计公式的计算精度及其适用条件是结构工程的重要研究内容之一。为检验现行行业标准《组合结构设计规范》(JGJ138-2016)中SRC框架梁正截面受弯极限弯矩计算式的适用范围及其计算精度,将该标准中的5条基本假定表示成数学表达式,基于数学表达式严格推导了SRC框架梁正截面受弯极限弯矩计算式的适用条件,建立了型钢腹板承受的轴向合力N_(aw)和其对合力点的力矩M_(aw)的计算式,并提出了适用条件的简化形式。采用文献中的SRC框架梁正截面受弯试件的试验数据,对建立的极限弯矩计算式、适用条件进行了验证,并与JGJ138-2016中的极限弯矩计算式、适用条件进行了对比。研究表明,SRC框架梁正截面受弯极限弯矩计算式较JGJ138-2016中的计算式精度更高,JGJ138-2016中SRC框架梁正截面受弯极限弯矩计算式的适用条件需进行修正。 展开更多
关键词 src框架梁 正截面受弯极限弯矩 平截面假定 拉压梯形应力图形
下载PDF
Experimental study and analysis on fatigue stiffness of RC beams strengthened with CFRP and steel plate 被引量:13
16
作者 卢亦焱 胡玲 +1 位作者 李杉 王康昊 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第3期701-707,共7页
The objective of this work is to investigate the fatigue behavior of reinforced concrete(RC) beams strengthened with externally bonded carbon fiber reinforced polymer(CFRP) and steel plate. An experimental investigati... The objective of this work is to investigate the fatigue behavior of reinforced concrete(RC) beams strengthened with externally bonded carbon fiber reinforced polymer(CFRP) and steel plate. An experimental investigation and theoretical analysis were made on the law of deflection development and stiffness degradation, as well as the influence of fatigue load ranges. Test results indicate that the law of three-stage change under fatigue loading is followed by both midspan deflection and permanent deflection, which also have positive correlation with fatigue load amplitude. Fatigue stiffness of composite strengthened beams degrades gradually with the increasing of number of cycles. Based on the experimental results, a theoretical model by effective moment of inertia method is developed for calculating the sectional stiffness of such composite strengthened beams under fatigue loading, and the calculated results are in good agreement with the experimental results. 展开更多
关键词 carbon fiber reinforced polymer steel plate composite strengthening technique reinforced concrete beams fatigue stiffness
下载PDF
Experimental and analytical study on seismic behavior of steel-concrete multienergy dissipation composite shear walls 被引量:5
17
作者 Dong Hongying Cao Wanlin +2 位作者 Wu Haipeng Qiao Qiyun Yu Chuanpeng 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2015年第1期125-139,共15页
In this paper, a steel-concrete multi-energy dissipation composite shear wall, comprised of steel-reinforced concrete (SRC) columns, steel plate (SP) deep beams, a concrete wall and energy dissipation strips, is p... In this paper, a steel-concrete multi-energy dissipation composite shear wall, comprised of steel-reinforced concrete (SRC) columns, steel plate (SP) deep beams, a concrete wall and energy dissipation strips, is proposed. In order to study the multi-energy dissipation behavior and restorability after an earthquake, two stages of low cyclic loading tests were carded out on ten test specimens. In the first stage, test on five specimens with different number of SP deep beams was carried out, and the test lasted until the displacement drift reached 2%. In the second stage, thin SPs were welded to both sides of the five specimens tested in the first stage, and the same test was carried out on the repaired specimens (designated as new specimens). The load-bearing capacity, stiffness, ductility, hysteretic behavior and failure characteristics were analyzed for both stages and the results are discussed herein. Extrapolating from these results, strength calculation models and formulas are proposed herein and simulations using ABAQUS carried out, they show good agreement with the test results. The study demonstrates that SRC columns, SP deep beams, concrete wall and energy dissipation strips cooperate well and play an important role in energy dissipation. In addition, this study shows that the shear wall has good recoverability after an earthquake, and that the welding of thin SP's to repair a deformed wall is a practicable technique. 展开更多
关键词 steel reinforced concrete steel plate deep beam multi energy dissipation composite shear wall seismic behavior
下载PDF
预制梁端削弱型钢梁-SRC柱组合节点抗震性能数值分析 被引量:1
18
作者 王其辉 刘继明 +4 位作者 吴成龙 李绍辉 施兴林 张新永 郑灵枫 《中国科技论文》 CAS 北大核心 2023年第2期204-214,共11页
为了进一步研究预制梁端削弱型钢梁-钢骨混凝土(steel reinforcement concrete,SRC)柱组合节点的抗震性能,在验证有限元数值模型可靠性的基础上,通过ABAQUS建立了6个梁端削弱构造形式的有限元节点模型,分析不同构造形式对节点滞回性能... 为了进一步研究预制梁端削弱型钢梁-钢骨混凝土(steel reinforcement concrete,SRC)柱组合节点的抗震性能,在验证有限元数值模型可靠性的基础上,通过ABAQUS建立了6个梁端削弱构造形式的有限元节点模型,分析不同构造形式对节点滞回性能、弯矩-转角曲线、延性性能及性能退化的影响规律。结果表明:仅梁端翼缘削弱时,对节点耗能性能、承载能力、延性变形以及强度和刚度性能退化影响较小;随着梁端翼缘和腹板同时增加削弱尺寸程度,可显著提高节点耗能能力,最大增幅约为31.25%;承载力总体呈现降低的变化趋势,最大降低仅为7.0%;延性性能提高10.66%;对强度退化性能略有改善。选用翼缘和腹板同时削弱的构造形式,可改善节点的耗能能力和延性性能。 展开更多
关键词 钢骨混凝土 钢混组合节点 抗震性能 梁端削弱构造 有限元分析
下载PDF
基于修正压力场理论的PSRC梁受剪承载力分析
19
作者 孙德康 邵永健 《建筑结构》 北大核心 2023年第16期51-57,共7页
为分析预制装配型钢混凝土(PSRC)梁的受剪机理并准确计算其受剪承载力,考虑剪跨比、型钢类型、抗剪连接件、现浇混凝土强度与类型、加载方式、浇筑方式等影响因素,设计并制作了10根PSRC梁试件,对其中9根PSRC梁试件进行低周反复荷载试验,... 为分析预制装配型钢混凝土(PSRC)梁的受剪机理并准确计算其受剪承载力,考虑剪跨比、型钢类型、抗剪连接件、现浇混凝土强度与类型、加载方式、浇筑方式等影响因素,设计并制作了10根PSRC梁试件,对其中9根PSRC梁试件进行低周反复荷载试验,另1根PSRC梁试件进行单调加载对比试验。基于改进的修正压力场理论提出了适用于PSRC梁的受剪计算公式。研究表明:PSRC梁受剪承载力试验值与计算值吻合较好;计算内置蜂窝型钢试件受剪承载力时,需将型钢腹板的贡献进行折减,使其满足安全要求。 展开更多
关键词 型钢混凝土叠合梁 修正压力场理论 受剪计算模型 受剪承载力
下载PDF
预制装配式型钢混凝土梁抗剪承载力的智能模型研究 被引量:1
20
作者 刘坚 招渝 +11 位作者 刘长江 马宏伟 邢增林 周观根 肖海鹏 彭林苗 任达 陈原 童华炜 戚玉亮 杨勤鹏 张专涛 《建筑钢结构进展》 CSCD 北大核心 2024年第3期12-20,共9页
通过建立计算预制装配式型钢混凝土(PSRC)梁抗剪承载力的智能模型,在一定程度上提高了计算精度与适用性。基于BP人工神经网络算法,通过对影响PSRC梁抗剪承载力的相关参数进行梳理,选取14个主要影响参数作为输入层,以试算法确定隐含层节... 通过建立计算预制装配式型钢混凝土(PSRC)梁抗剪承载力的智能模型,在一定程度上提高了计算精度与适用性。基于BP人工神经网络算法,通过对影响PSRC梁抗剪承载力的相关参数进行梳理,选取14个主要影响参数作为输入层,以试算法确定隐含层节点数为5,初步构建了3层结构人工神经网络系统;以收集的76组试验数据作为学习样本,对构建的神经网络系统进行训练,建立了对PSRC梁及SRC梁抗剪承载力计算的N14-5-1智能模型。使用智能模型对6个PSRC梁构件及6个SRC梁构件进行抗剪承载力计算,并通过与规范公式计算结果、试验结果的对比分析,证明了智能模型具有良好的计算精度及较好的泛化能力,具有一定的工程参考意义。运用Garson算法对输入参数进行敏感性分析,结果表明箍筋间距、型钢屈服强度、箍筋屈服强度、型钢腹板含钢率对抗剪承载力影响较大。随着研究试验的开展,在收集更多具有代表性的试验数据以扩充学习样本后,可对智能模型进一步优化。 展开更多
关键词 预制装配式型钢混凝土梁 BP人工神经网络 抗剪承载力 智能模型
下载PDF
上一页 1 2 62 下一页 到第
使用帮助 返回顶部