In this paper, the production technology of transformation induced plasticity (TRIP) steel was first introduced into the steel tube manufacture field to produce the steel tubes with high strength and plasticity. The...In this paper, the production technology of transformation induced plasticity (TRIP) steel was first introduced into the steel tube manufacture field to produce the steel tubes with high strength and plasticity. The TRIP seamless steel tubes with the microstructure of ferrite, bainite, retained austenite and a little martensite were successfully fabricated using a cold-drawn steel tube with two-stage heat treatment technique and continu- ous heat treatment process, respectively. The ring tensile test and cold bend test were carried out to study the formability of the newly developed TRIP seamless steel tube. The results showed that the TRIP seamless steel tubes have a good cold formability, and they are available to be used in the tube hydroforming process. In ad- dition, the equipment of continuous heat treatment developed in the current study can be used to produce TRIP steel tube, and it may serve as an important reference for the industrial production of TRIP steel tube.展开更多
A low-carbon TRIP seamless steel tube, which is expected to be used in the hydroforming process, was successfully fabricated using piercing, cold-drawing and two-stage heat treatment process. The two-stage heat treatm...A low-carbon TRIP seamless steel tube, which is expected to be used in the hydroforming process, was successfully fabricated using piercing, cold-drawing and two-stage heat treatment process. The two-stage heat treatment is one crucial step because it significantly affects the microstructure and mechanical properties of TRIP seam less steel tube. In order to obtain the TRIP seamless steel tube with high hydroformability, several different heat treatment processes were conducted. The effects of heat treatment conditions (intercritical annealing (IA) and isothermal bainite treatment (IBT)) on the TRIP seamless steel tube hydroformability which was determined by free hydraulic bulge test were analyzed. Two different internal pressure boosting velocities of 0.2 and 0.5 MPa/s of free hydraulic bulge tests were adopted to determine the effective stress vs. effective strain curve of TRIP seamless steel tube. The results showed that for the predetermined IA condition, the maximum bulge height increased, but the maximum burst internal pressure decreased, with the increase of IBT holding time from 4 to 6 rain. For the predetermined IBT condition, the maximum bulge height decreased, but the maximum burst internal pressure increased, with the increase of IA holding time from 5 to 10 rain. By analyzing the free hydraulic bulge test results, it was found that the maximum bulge heights of TRIP seamless steel tubes with the internal pressure boosting velocity of 0.5 MPa/s were higher than those when the internal pressure boosting velocity was 0.2 MPa/s. This means that an appropriate deformation rate should be chosen to obtain the optimal hydroformability of TRIP seamless steel tube. In addition, the effective stress vs. effective strain curves of TRIP seamless steel tubes were ohtained with free hydraulic bulge test.展开更多
文摘In this paper, the production technology of transformation induced plasticity (TRIP) steel was first introduced into the steel tube manufacture field to produce the steel tubes with high strength and plasticity. The TRIP seamless steel tubes with the microstructure of ferrite, bainite, retained austenite and a little martensite were successfully fabricated using a cold-drawn steel tube with two-stage heat treatment technique and continu- ous heat treatment process, respectively. The ring tensile test and cold bend test were carried out to study the formability of the newly developed TRIP seamless steel tube. The results showed that the TRIP seamless steel tubes have a good cold formability, and they are available to be used in the tube hydroforming process. In ad- dition, the equipment of continuous heat treatment developed in the current study can be used to produce TRIP steel tube, and it may serve as an important reference for the industrial production of TRIP steel tube.
基金Item Sponsored by National Natural Science Foundation of China(51304046)Grant-in-Aid for Young Scientists (B) of Japan Society for the Promotion of Science(25870594)+2 种基金Fundamental Research Funds for the Central Universities of China(N130403013)Specialized Research Fund for the Doctoral Program of Higher Education of China(20130042120031)Scientific Research Starting Foundation for Introduced Talents of Northeastern University of China(02090021233002)
文摘A low-carbon TRIP seamless steel tube, which is expected to be used in the hydroforming process, was successfully fabricated using piercing, cold-drawing and two-stage heat treatment process. The two-stage heat treatment is one crucial step because it significantly affects the microstructure and mechanical properties of TRIP seam less steel tube. In order to obtain the TRIP seamless steel tube with high hydroformability, several different heat treatment processes were conducted. The effects of heat treatment conditions (intercritical annealing (IA) and isothermal bainite treatment (IBT)) on the TRIP seamless steel tube hydroformability which was determined by free hydraulic bulge test were analyzed. Two different internal pressure boosting velocities of 0.2 and 0.5 MPa/s of free hydraulic bulge tests were adopted to determine the effective stress vs. effective strain curve of TRIP seamless steel tube. The results showed that for the predetermined IA condition, the maximum bulge height increased, but the maximum burst internal pressure decreased, with the increase of IBT holding time from 4 to 6 rain. For the predetermined IBT condition, the maximum bulge height decreased, but the maximum burst internal pressure increased, with the increase of IA holding time from 5 to 10 rain. By analyzing the free hydraulic bulge test results, it was found that the maximum bulge heights of TRIP seamless steel tubes with the internal pressure boosting velocity of 0.5 MPa/s were higher than those when the internal pressure boosting velocity was 0.2 MPa/s. This means that an appropriate deformation rate should be chosen to obtain the optimal hydroformability of TRIP seamless steel tube. In addition, the effective stress vs. effective strain curves of TRIP seamless steel tubes were ohtained with free hydraulic bulge test.