The interfacial status of the steel-aluminum solid to liquid bonding plates (their steel plate surfaces were or were not immersed in flux aqueous solution) were measured by using SEM (Scanning Electron Microscope) and...The interfacial status of the steel-aluminum solid to liquid bonding plates (their steel plate surfaces were or were not immersed in flux aqueous solution) were measured by using SEM (Scanning Electron Microscope) and X-ray diffraction . The results showed that the layer of flux (the minimum thickness was 15 μm on the steel plate surface) could protect the steel plate surface from oxidizing effectively at high temperature in solid to liquid bonding. The melt temperatUre of the flux should be lower than 580 ℃ so that it could be melted and removed completely. No. 1 flux (patent product made by the author) made up of halogeindes could also force liquid aluminum to infiltrate into steel plate surface and thus the interfacial shear strength of the bonding plate was rather large.展开更多
A new type of environmentally friendly lube additive-amide type modified rapeseed oil was synthesized and characterized by infrared spectrum. Its effect on the friction and wear behavior of steel-steel and steel-alumi...A new type of environmentally friendly lube additive-amide type modified rapeseed oil was synthesized and characterized by infrared spectrum. Its effect on the friction and wear behavior of steel-steel and steel-aluminum alloy systems were investigated with a four-ball machine and an Optimol SRV friction and wear tester respectively.The morphographies of the worn surfaces were analyzed by means of scanning electron microscopy(SEM). The worn surfaces of the 2024Al alloy block were analyzed by means of X-ray photoelectron spectroscopy(XPS). The results show that the modified rapeseed oil as additives can obviously decrease the wear rate and friction coefficient of steel pair and steel-aluminum frictional pair. Its lubrication mechanism is inferred that a high strength complex protection films form on the worn surface of the Al alloy due to the adsorption or tribochemistry reaction of a long chain additive molecule and high reaction activity of N element.展开更多
The bonding of solid steel plate to liquid aluminum was studied by using rapid solidification. The relationship between the bonding parameters such as preheat temperature of steel plate, temperature of aluminum liquid...The bonding of solid steel plate to liquid aluminum was studied by using rapid solidification. The relationship between the bonding parameters such as preheat temperature of steel plate, temperature of aluminum liquid and bonding time, and the interfacial shear strength of bonding plate was established by artificial neural networks perfectly. This relationship was optimized with a genetic algorithm. The optimum bonding parameters are: 226 ℃ for preheat temperature of steel plate, 723 ℃ for temperature of aluminum liquid and 15.8 s for bonding time, and the largest interfacial shear strength of bonding plate is 71.6 MPa.展开更多
The bonding of solid steel plate to liquid aluminum was studied using rapidsolidification. The surface of solid steel plate was defatted, descaled, immersed (in K_2ZrF_6 fluxaqueous solution) and stoved. In order to d...The bonding of solid steel plate to liquid aluminum was studied using rapidsolidification. The surface of solid steel plate was defatted, descaled, immersed (in K_2ZrF_6 fluxaqueous solution) and stoved. In order to determine the thickness of Fe-Al compound layer at theinterface of steel-aluminum solid to liquid bonding under rapid solidification, the interface ofbonding plate was investigated by SEM (Scanning Electron Microscope) experiment. The relationshipbetween bonding parameters (such as preheat temperature of steel plate, temperature of aluminumliquid and bonding time) and thickness of Fe-Al compound layer at the interface was established byartificial neural networks (ANN) perfectly. The maximum of relative error between the output and thedesired output of the ANN is only 5.4%. From the bonding parameters for the largest interfacialshear strength of bonding plate (226℃ for preheat temperature of steel plate, 723℃ for temperatureof aluminum liquid and 15.8 s for bonding time), the reasonable thickness of Fe-Al compound layer10.8 μm was got.展开更多
文摘The interfacial status of the steel-aluminum solid to liquid bonding plates (their steel plate surfaces were or were not immersed in flux aqueous solution) were measured by using SEM (Scanning Electron Microscope) and X-ray diffraction . The results showed that the layer of flux (the minimum thickness was 15 μm on the steel plate surface) could protect the steel plate surface from oxidizing effectively at high temperature in solid to liquid bonding. The melt temperatUre of the flux should be lower than 580 ℃ so that it could be melted and removed completely. No. 1 flux (patent product made by the author) made up of halogeindes could also force liquid aluminum to infiltrate into steel plate surface and thus the interfacial shear strength of the bonding plate was rather large.
基金Project supported by the National Natural Science Foundation of China
文摘A new type of environmentally friendly lube additive-amide type modified rapeseed oil was synthesized and characterized by infrared spectrum. Its effect on the friction and wear behavior of steel-steel and steel-aluminum alloy systems were investigated with a four-ball machine and an Optimol SRV friction and wear tester respectively.The morphographies of the worn surfaces were analyzed by means of scanning electron microscopy(SEM). The worn surfaces of the 2024Al alloy block were analyzed by means of X-ray photoelectron spectroscopy(XPS). The results show that the modified rapeseed oil as additives can obviously decrease the wear rate and friction coefficient of steel pair and steel-aluminum frictional pair. Its lubrication mechanism is inferred that a high strength complex protection films form on the worn surface of the Al alloy due to the adsorption or tribochemistry reaction of a long chain additive molecule and high reaction activity of N element.
文摘The bonding of solid steel plate to liquid aluminum was studied by using rapid solidification. The relationship between the bonding parameters such as preheat temperature of steel plate, temperature of aluminum liquid and bonding time, and the interfacial shear strength of bonding plate was established by artificial neural networks perfectly. This relationship was optimized with a genetic algorithm. The optimum bonding parameters are: 226 ℃ for preheat temperature of steel plate, 723 ℃ for temperature of aluminum liquid and 15.8 s for bonding time, and the largest interfacial shear strength of bonding plate is 71.6 MPa.
基金This project is financially supported by National Natural Science Foundation of China (No.50274047) and Advanced Technical Committee of China(No. 715-009-060)
文摘The bonding of solid steel plate to liquid aluminum was studied using rapidsolidification. The surface of solid steel plate was defatted, descaled, immersed (in K_2ZrF_6 fluxaqueous solution) and stoved. In order to determine the thickness of Fe-Al compound layer at theinterface of steel-aluminum solid to liquid bonding under rapid solidification, the interface ofbonding plate was investigated by SEM (Scanning Electron Microscope) experiment. The relationshipbetween bonding parameters (such as preheat temperature of steel plate, temperature of aluminumliquid and bonding time) and thickness of Fe-Al compound layer at the interface was established byartificial neural networks (ANN) perfectly. The maximum of relative error between the output and thedesired output of the ANN is only 5.4%. From the bonding parameters for the largest interfacialshear strength of bonding plate (226℃ for preheat temperature of steel plate, 723℃ for temperatureof aluminum liquid and 15.8 s for bonding time), the reasonable thickness of Fe-Al compound layer10.8 μm was got.