期刊文献+
共找到15,274篇文章
< 1 2 250 >
每页显示 20 50 100
Repositioning fertilizer manufacturing subsidies for improving food security and reducing greenhouse gas emissions in China 被引量:1
1
作者 Zongyi Wu Xiaolong Feng +1 位作者 Yumei Zhang Shenggen Fan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期430-443,共14页
China removed fertilizer manufacturing subsidies from 2015 to 2018 to bolster market-oriented reforms and foster environmentally sustainable practices.However,the impact of this policy reform on food security and the ... China removed fertilizer manufacturing subsidies from 2015 to 2018 to bolster market-oriented reforms and foster environmentally sustainable practices.However,the impact of this policy reform on food security and the environment remains inadequately evaluated.Moreover,although green and low-carbon technologies offer environmental advantages,their widespread adoption is hindered by prohibitively high costs.This study analyzes the impact of removing fertilizer manufacturing subsidies and explores the potential feasibility of redirecting fertilizer manufacturing subsidies to invest in the diffusion of these technologies.Utilizing the China Agricultural University Agri-food Systems model,we analyzed the potential for achieving mutually beneficial outcomes regarding food security and environmental sustainability.The findings indicate that removing fertilizer manufacturing subsidies has reduced greenhouse gas(GHG)emissions from agricultural activities by 3.88 million metric tons,with minimal impact on food production.Redirecting fertilizer manufacturing subsidies to invest in green and low-carbon technologies,including slow and controlled-release fertilizer,organic-inorganic compound fertilizers,and machine deep placement of fertilizer,emerges as a strategy to concurrently curtail GHG emissions,ensure food security,and secure robust economic returns.Finally,we propose a comprehensive set of government interventions,including subsidies,field guidance,and improved extension systems,to promote the widespread adoption of these technologies. 展开更多
关键词 food security fertilizer manufacturing subsidies agri-food systems greenhouse gas emissions
下载PDF
Energy Design and Optimization of Greenhouse by Natural Convection
2
作者 H.Benzzine H.Labrim +3 位作者 Aouatif Saad Y.Achour D.Zejli R.El Bouayadi 《Fluid Dynamics & Materials Processing》 EI 2024年第8期1903-1913,共11页
This study addresses the pressing need for energy-efficient greenhouse management by focusing on the innovative application of natural ventilation.The primary objective of this study is to evaluate various ventilation... This study addresses the pressing need for energy-efficient greenhouse management by focusing on the innovative application of natural ventilation.The primary objective of this study is to evaluate various ventilation strategies to enhance energy efficiency and optimize crop production in agricultural greenhouses.Employing advanced numerical simulation tools,the study conducts a comprehensive assessment of natural ventilation’s effectiveness under real-world conditions.The results underscore the crucial role of the stack effect and strategic window positioning in greenhouse cooling,providing valuable insights for greenhouse designers.Our findings shed light on the significant benefits of optimized ventilation and also offer practical implications for improving greenhouse design,ensuring sustainable and efficient agricultural practices.The study demonstrated energy savings in cooling from November to April,with a maximum saving of 680 kWh in March,indicating the effectiveness of strategically positioning windows to leverage the stack effect.This approach enhances plant growth and reduces the need for costly cooling systems,thereby improving overall energy efficiency and lowering operational expenses. 展开更多
关键词 ENERGY greenhouse COOLING natural ventilation SIMULATION TEMPERATURE
下载PDF
Effect of rice cultivar on greenhouse-gas emissions from rice-fish co-culture
3
作者 Kexin Xie Mengjie Wang +4 位作者 Xiaodan Wang Fengbo Li Chunchun Xu Jinfei Feng Fuping Fang 《The Crop Journal》 SCIE CSCD 2024年第3期888-896,共9页
In aquaculture,co-culturing rice with fish may mitigate greenhouse-gas emissions.In this study,co-culture of four rice cultivars in a laboratory-scale rice–fish system reduced CH_(4)and N_(2)O emissions relative to f... In aquaculture,co-culturing rice with fish may mitigate greenhouse-gas emissions.In this study,co-culture of four rice cultivars in a laboratory-scale rice–fish system reduced CH_(4)and N_(2)O emissions relative to fish monoculture.Differences in CH_(4)and N_(2)O emissions among rice cultivars primarily stem from the differential effects of rice plants on plant-mediated CH_(4)transport,CH_(4)oxidation and nitrogen absorption. 展开更多
关键词 greenhouse gas emissions AQUACULTURE Rice-fish system Rice cultivar
下载PDF
Response of Bacterial Community and Enzyme Activity of Greenhouse Tomato under Different Irrigation Systems
4
作者 Haijian Yang Mingzhi Zhang +1 位作者 Na Xiao Yuan Li 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第7期1543-1568,共26页
The micro-sprinkler irrigation mulched(MSM)has been suggested as a novel water-saving approach in con-trolled environment agriculture.However,the effects of microbial community structure and enzyme activity in the rhi... The micro-sprinkler irrigation mulched(MSM)has been suggested as a novel water-saving approach in con-trolled environment agriculture.However,the effects of microbial community structure and enzyme activity in the rhizosphere soil on crop growth under MSM remain unclear.This study conducted a randomized experimen-tal design using greenhouse tomatoes to investigate changes in bacterial community structure and enzyme activity in rhizosphere soil under different irrigation frequencies(F)and amounts(I)of MSM.Thefindings revealed that with the increase of F or I,The total count of soil bacteria in tomatoesfirst rose and then fell in terms of Opera-tional Taxonomic Units(OTUs)classification.Compared to other F,the most abundance of nitrogen and phos-phorus metabolism genes and enzyme activities were observed with a 5-day F.Moreover,the diversity of soil bacterial community structure initially rose before eventually declining with the increase of the I.Applying 1.00 Epan(cumulative evaporation of a 20 cm standard pan)under MSM helped boost the abundance of nitrogen and phosphorus metabolism functional genes in soil bacteria,ensuring higher enzyme activities related to nitro-gen,carbon,and phosphorus metabolism in the rhizosphere soil of tomatoes.Tomatoes’yield initially rose before eventually declining with the increase in F or I,whereas I had a more significant effect on yield.A 1.00%increase in I yielded a minimum of 39.24%increase in tomato yield.The study showed a positive correlation between soil bacterial community,soil enzyme activity,and greenhouse tomato yield under MSM.Considering the results comprehensively,the combined irrigation mode of F of 5 d and I of 1.00 Epan was recommended for greenhouse tomatoes under MSM.This conclusion provides theoretical support for water-saving practices and yield improve-ment in facility agriculture,especially tomato cultivation. 展开更多
关键词 greenhouse tomato YIELD bacterial community enzyme activity MODEL
下载PDF
Technique of Earthworms Restoring Soil in Greenhouse Cultivation
5
作者 Yanjiao LI Jiafei SU +7 位作者 Zhiu ZHANG Guang QI Jianhua CHEN Lixuan KOU Limin WANG Wenxian LIU Junyi ZHANG Libing QIU 《Asian Agricultural Research》 2024年第1期40-43,共4页
The production environment of greenhouse cultivation is relatively closed,the multiple cropping index is high,the management of fertilizationwatering and pesticideapplication isblindtosomeextent,andthe phenomenonofcon... The production environment of greenhouse cultivation is relatively closed,the multiple cropping index is high,the management of fertilizationwatering and pesticideapplication isblindtosomeextent,andthe phenomenonofcontinuous cropping isalsocommonSoilquali-ty affects the sustainable development of greenhouse cultivation.Earthworm is a ubiquitous invertebrate organism in soil,an important part of soil system,a link between terrestrial organisms and soil organisms,an important link in the small cycle of soil material organisms,and plays an important role in maintaining the structure and function of soil ecosystem.Different ecotypes of earthworms are closely related to their habi-tats(soil layers)and food resource preferences,and then affect their ecological functions.The principle of earthworm regulating soil function is essentially the close connection and interaction between earthworm and soil microorganism.Using different ecotypes of earthworms and bio-logical agents to carry out combined remediation of greenhouse cultivation soil is a technical model to realize sustainable development of green-house cultivation. 展开更多
关键词 Earthworms greenhouse cultivation Soil remediation Biological agent
下载PDF
Effects of long-term partial substitution of inorganic fertilizer with pig manure and/or straw on nitrogen fractions and microbiological properties in greenhouse vegetable soils
6
作者 Shuo Yuan Ruonan Li +5 位作者 Yinjie Zhang Hao'an Luan Jiwei Tang Liying Wang Hongjie Ji Shaowen Huang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第6期2083-2098,共16页
Partial substitution of inorganic fertilizers with organic amendments is an important agricultural management practice.An 11-year field experiment(22 cropping periods)was carried out to analyze the impacts of differen... Partial substitution of inorganic fertilizers with organic amendments is an important agricultural management practice.An 11-year field experiment(22 cropping periods)was carried out to analyze the impacts of different partial substitution treatments on crop yields and the transformation of nitrogen fractions in greenhouse vegetable soil.Four treatments with equal N,P_(2)O_(5),and K_(2)O inputs were selected,including complete inorganic fertilizer N(CN),50%inorganic fertilizer N plus 50%pig manure N(CPN),50%inorganic fertilizer N plus 25%pig manure N and 25%corn straw N(CPSN),and 50%inorganic fertilizer N plus 50%corn straw N(CSN).Organic substitution treatments tended to increase crop yields since the 6th cropping period compared to the CN treatment.From the 8th to the 22nd cropping periods,the highest yields were observed in the CPSN treatment where yields were 7.5-11.1%greater than in CN treatment.After 11-year fertilization,compared to CN,organic substitution treatments significantly increased the concentrations of NO_(3)^(-)-N,NH_(4)^(+)-N,acid hydrolysis ammonium-N(AHAN),amino acid-N(AAN),amino sugar-N(ASN),and acid hydrolysis unknown-N(AHUN)in soil by 45.0-69.4,32.8-58.1,49.3-66.6,62.0-69.5,34.5-100.3,and 109.2-172.9%,respectively.Redundancy analysis indicated that soil C/N and OC concentration significantly affected the distribution of N fractions.The highest concentrations of NO_(3)^(-)-N,AHAN,AAN,AHUN were found in the CPSN treatment.Organic substitution treatments increased the activities ofβ-glucosidase,β-cellobiosidase,N-acetyl-glucosamidase,L-aminopeptidase,and phosphatase in the soil.Organic substitution treatments reduced vector length and increased vector angle,indicating alleviation of constraints of C and N on soil microorganisms.Organic substitution treatments increased the total concentrations of phospholipid fatty acids(PLFAs)in the soil by 109.9-205.3%,and increased the relative abundance of G^(+)bacteria and fungi taxa,but decreased the relative abundance of G-bacteria,total bacteria,and actinomycetes.Overall,long-term organic substitution management increased soil OC concentration,C/N,and the microbial population,the latter in turn positively influenced soil enzyme activity.Enhanced microorganism numbers and enzyme activity enhanced soil N sequestration by transforming inorganic N to acid hydrolysis-N(AHN),and enhanced soil N supply capacity by activating non-acid hydrolysis-N(NAHN)to AHN,thus improving vegetable yield.Application of inorganic fertilizer,manure,and straw was a more effective fertilization model for achieving sustainable greenhouse vegetable production than application of inorganic fertilizer alone. 展开更多
关键词 organic substitution management greenhouse vegetable production N fractions microbial community composition extracellular enzyme activity enzyme stoichiometry coefficients
下载PDF
Microplastic Impacts on Greenhouse Gases Emissions in Terrestrial Ecosystems
7
作者 Tazeen Fatima Khan M. M. Golam Rabbani 《Open Journal of Soil Science》 2024年第1期64-80,共17页
Microplastics can influence global climate change by regulating the emissions of greenhouse gases from different ecosystems. The effects of microplastics in terrestrial ecosystems are still not well studied particular... Microplastics can influence global climate change by regulating the emissions of greenhouse gases from different ecosystems. The effects of microplastics in terrestrial ecosystems are still not well studied particularly greenhouse gases emissions. Thus, we conducted a laboratory experiment over a period of 90 days with two types of microplastics (differing in their chemical structure), high density polyethylene (HDPE) and low density polyethylene (LDPE), which were applied to the soil at a rate of 0% to 0.1% (w/w). The overarching aim was to investigate the effects of microplastic type, microplastic concentration and days of exposure on greenhouse gases emissions. We also used original and artificially weathered microplastics (the same HDPE and LDPE) to make a comparison of greenhouse gases emissions between the original microplastics treated soils and the soils treated with weathered microplastics. Our findings showed that HDPE and LDPE microplastics significantly increased the emissions of greenhouse gases from the soil than that of the control soils. Emissions were increased with the increases in the level of microplastic in the soil. The weathered microplastic emitted greater quantity of greenhouse gases compared to that of the original microplastics. In contrast to a low initial emission quantity, the emissions were gradually increased at the termination of the experiment. Our experiment on the emissions of greenhouse gases from the soil vis-à-vis microplastic additions indicated that the microplastic increased the emissions of greenhouse gases in terrestrial ecosystems, and pervasive microplastic impacts may have consequences for the global climate change. Greenhouse gases emissions from the soil not only depend on the type and concentration of the microplastic, but also on the days of exposure to the microplastic. 展开更多
关键词 Microplastic Climate Change greenhouse Gas TYPE CONCENTRATION
下载PDF
Design and Development of a Parabolic Trough Solar Air Heater for a Greenhouse Dryer
8
作者 Eric King’ori Isaac N. Simate 《Journal of Power and Energy Engineering》 2024年第9期1-18,共18页
Design and Development of a Parabolic Trough Solar Air Heater (PTSAH) for a Greenhouse Dryer (GD) was done to improve the dryer’s performance. The materials used for the fabrication of the PTSAH included galvanized s... Design and Development of a Parabolic Trough Solar Air Heater (PTSAH) for a Greenhouse Dryer (GD) was done to improve the dryer’s performance. The materials used for the fabrication of the PTSAH included galvanized sheets covered with aluminium foil, an absorber tube made of GI pipe painted matt black to increase heat absorbance at the focal line, mild steel square tubes, shutter plywood, and an axial fan to push air through the absorber tube. Key geometrical parameters used for the design of the PTSAH were a rim angle of 98 degrees, focal length of 0.2608 m, height of 0.3451 m, length of 2 m, and an aperture width of 1.2 m. The PTSAH’s total aperture surface area was 2.4 m2, while its absorber tube surface area was 0.1587 m2. The PTSAH was experimentally tested to establish its thermal performance. It was found that the ambient air recorded an average value of 31.1˚C and that the air heater could increase the air temperature by 45.6˚C above ambient with a thermal efficiency of 5.3%. It can, therefore, be concluded that the PTSAH can significantly improve the performance of a GD by supplying the GD with air at a higher temperature than ambient. 展开更多
关键词 Solar Air Heater greenhouse Dryer Parabolic Trough Thermal Performance
下载PDF
Collapse Behavior of Pipe-Framed Greenhouses with and without Reinforcement under Snow Loading:A 3-D Finite Element Analysis
9
作者 Yasushi Uematsu Kazuya Takahashi 《Journal of Civil Engineering and Architecture》 2024年第2期51-59,共9页
The present paper first investigates the collapse behavior of a conventional pipe-framed greenhouse under snow loading based on a 3-D finite element analysis,in which both geometrical and material non-linearities are ... The present paper first investigates the collapse behavior of a conventional pipe-framed greenhouse under snow loading based on a 3-D finite element analysis,in which both geometrical and material non-linearities are considered.Three snow load distribution patterns related to the wind-driven snow particle movement are used in the analysis.It is found that snow load distribution affects the deformation and collapse behavior of the pipe-framed greenhouse significantly.The results obtained in this study are consistent with the actual damage observed.Next,discussion is made of the effects of reinforcements by adding members to the basic frame on the strength of the whole structure,in which seven kinds of reinforcement methods are examined.A buckling analysis is also carried out.The results indicate that the most effective reinforcement method depends on the snow load distribution pattern. 展开更多
关键词 Pipe-framed greenhouse snow loading COLLAPSE BUCKLING finite element analysis
下载PDF
Feeding the world: impacts of elevated [CO_(2)] on nutrient content of greenhouse grown fruit crops and options for future yield gains
10
作者 Nicholas H.Doddrell Tracy Lawson +2 位作者 Christine A.Raines Carol Wagstaff Andrew J.Simkin 《Horticulture Research》 SCIE CSCD 2023年第4期83-100,共18页
Several long-term studies have provided strong support demonstrating that growing crops under elevated[CO_(2)]can increase photosynthesis and result in an increase in yield,flavour and nutritional content(including bu... Several long-term studies have provided strong support demonstrating that growing crops under elevated[CO_(2)]can increase photosynthesis and result in an increase in yield,flavour and nutritional content(including but not limited to Vitamins C,E and pro-vitamin A).In the case of tomato,increases in yield by as much as 80%are observed when plants are cultivated at 1000 ppm[CO_(2)],which is consistent with current commercial greenhouse productionmethods in the tomato fruit industry.These results provide a clear demonstration of the potential for elevating[CO_(2)]for improving yield and quality in greenhouse crops.The major focus of this review is to bring together 50 years of observations evaluating the impact of elevated[CO_(2)]on fruit yield and fruit nutritional quality.In the final section,we consider the need to engineer improvements to photosynthesis and nitrogen assimilation to allow plants to take greater advantage of elevated CO_(2) growth conditions. 展开更多
关键词 CROPS greenhouse content
下载PDF
Struvite Effects on Rice Growth and Productivity under Flood-Irrigation in the Greenhouse
11
作者 Diego Della Lunga Kristofor R. Brye +3 位作者 Trenton L. Roberts Chris G. Henry Michelle A. Evans-White Daniel J. Lessner 《Agricultural Sciences》 2023年第7期864-877,共14页
In recent years, electrochemical precipitation has gained interest as an alternative method for the synthesis of various minerals, including struvite, from waste streams that can serve as an alternative fertilizer. St... In recent years, electrochemical precipitation has gained interest as an alternative method for the synthesis of various minerals, including struvite, from waste streams that can serve as an alternative fertilizer. Studies in lowland cultivations, specifically rice (Oryza sativa) under flood-irrigated conditions, evaluating struvite as a possible alternative phosphorus (P) fertilizer source have been limited. The objective of this study was to evaluate rice response to electrochemically precipitated struvite (ECST) compared to triple superphosphate (TSP), diammonium phosphate (DAP), a chemically precipitated struvite (CPST), and an unamended control (UC), grown under flooded-soil conditions in the greenhouse. Aboveground vegetative dry matter (DM) P concentration was greatest from the UC (0.18%) and was lowest from DAP (0.08%). Root DM Mg concentration was greatest from ECST (0.13%) and was lowest from TSP (0.10%). Grain yield was greatest from DAP (11.2 Mg•ha<sup>−1</sup>) and was lowest from the UC (4.0 Mg•ha<sup>−1</sup>). Grain N, P, K, and Mg uptake were consistently greatest from DAP and consistently lowest from the UC. Grain N concentration was 1.1 times greater from CPST than from ECST, while all other measured rice properties did not differ between the struvite-P sources. The many similar rice responses between struvite materials (ECST and CPST) and TSP and DAP demonstrate that struvite, particularly ECST, is a valid alternative fertilizer-P source for rice-production systems. Further studies should evaluate potential environmental implications (i.e., runoff water quality and greenhouse gas emissions) from struvite use that could affect agricultural sustainability. 展开更多
关键词 greenhouse Nitrogen PHOSPHORUS Rice Production STRUVITE
下载PDF
Strategies for High-quality Development of Greenhouse Vegetables in Zibo City,Shandong Province
12
作者 Dongwen SUN He ZHU +4 位作者 Bo LI Jiaer XU Xinying YAN Yuxin HE Yu SHI 《Asian Agricultural Research》 2023年第12期21-23,共3页
This investigation report got a clear picture of the general situation of the development of greenhouse vegetable industry in Zibo,and found out the existing problems such as frequent harmful weather,few special varie... This investigation report got a clear picture of the general situation of the development of greenhouse vegetable industry in Zibo,and found out the existing problems such as frequent harmful weather,few special varieties and high-grade varieties of greenhouse vegetables,fragmentation of new technology promotion of greenhouse vegetables,low level of intensive seedling raising of vegetables,backward level of facility planting structure and equipment,etc.This paper puts forward the strategies for the future high-quality development of vegetables:promoting the adjustment of vegetable planting structure,rationally arranging vegetables for rotation,strengthening vegetable technical guidance,and innovating vegetable consumption patterns. 展开更多
关键词 greenhouse VEGETABLES High quality STRATEGIES
下载PDF
Greenhouse gas emission analysis and measurement for urban rail transit: A review of research progress and prospects 被引量:2
13
作者 Zhenzhou Yuan Xiaojing Yuan +4 位作者 Yang Yang Jinjie Chen Yingjie Nie Meng Cao Long Chen 《Digital Transportation and Safety》 2023年第1期36-51,共16页
Rail transit plays a key role in mitigating transportation system carbon emissions.Accurate measurement of urban rail transit carbon emission can help quantify the contribution of urban rail transit towards urban tran... Rail transit plays a key role in mitigating transportation system carbon emissions.Accurate measurement of urban rail transit carbon emission can help quantify the contribution of urban rail transit towards urban transportation carbon emission reduction.Since the whole life cycle of urban rail transit carbon emission measurement involves a wide range of aspects,a systematic framework model is required for analysis.This research reviews the existing studies on carbon emission of urban rail transit.First,the characteristics of urban rail transit carbon emission were determined and the complexity of carbon emission measurement was analyzed.Then,the urban rail transit carbon emission measurement models were compared and analyzed in terms of the selection of research boundaries,the types of greenhouse gas(GHG)emissions calculation,and the accuracy of the measurement.Following that,an intelligent station was introduced to analyze the practical application of digital collaboration technology and energy-saving and carbon-reducing system platforms for rail transit.Finally,the urgent problems and future research directions at this stage were discussed.This research presents the necessity of establishing a dynamic carbon emission factor library and the important development trend of system integration of carbon emission measurement and digital system technology. 展开更多
关键词 Urban rail transit Life cycle assessment(LCA) greenhouse gas emission Digital collaboration technology Carbon emission factors Climate change Measurement method
下载PDF
Recovery of greenhouse gas as cleaner fossil fuel contributes to carbon neutrality
14
作者 Xin Zhang Jian-Rong Li 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期351-353,共3页
Under the context of carbon neutrality of China,it is urgent to shift our energy supply towards cleaner fuels as well as to reduce the greenhouse gas emission.Currently,coal is the main fossil fuel energy source of Ch... Under the context of carbon neutrality of China,it is urgent to shift our energy supply towards cleaner fuels as well as to reduce the greenhouse gas emission.Currently,coal is the main fossil fuel energy source of China.The country is striving hard to replace it with methane,a cleaner fossil fuel.Although China has rich geological resources of methane as coal bed methane(CBM)reserves,it is quite challenging to utilize them due to low concentration.The CBM is however mainly emitted directly to atmosphere during coal mining,causing waste of the resource and huge contribution to greenhouse effect.The recent work by Yang et al.demonstrated a potential solution to extract low concentration methane selectively from CBM through using MOF materials as sorbents.Such kind of materials and associated separation technology are promising to reduce greenhouse gas emission and promote the methane production capability,which would contribute to carbon neutrality in dual pathways. 展开更多
关键词 Carbon neutrality Coal bed methane Metal–organic frameworks greenhouse gas Fossil fuel
下载PDF
Greenhouse gas reduction of co-benefit-type wastewater treatment system for fish-processing industry: A real-scale case study in Indonesia
15
作者 Yoshiteru Hamatani Takahiro Watari +3 位作者 Masashi Hatamoto Takashi Yamaguchi Tjandra Setiadi Toshihiko Konda 《Water Science and Engineering》 EI CAS CSCD 2023年第3期271-279,共9页
This study examined the application of co-benefit-type wastewater treatment technology in the fish-processing industry. Given that there was a dearth of information on fish-processing industrial wastewater in Indonesi... This study examined the application of co-benefit-type wastewater treatment technology in the fish-processing industry. Given that there was a dearth of information on fish-processing industrial wastewater in Indonesia, site surveys were conducted. For the entire fish-processing industry throughout the country, the dissemination rate of wastewater treatment facilities was less than 50%. Using a co-benefit approach, a real-scale swim-bed technology (SBT) and a system combining an anaerobic baffled reactor (ABR) with SBT (ABR–SBT) were installed in a fishmeal processing factory in Bali, Indonesia, and the wastewater system process performance was evaluated. In a business-as-usual scenario, the estimated chemical oxygen demand load and greenhouse gas (GHG) emissions from wastewater from the Indonesian fish-processing industry were 33 000 tons per year and 220 000 tons of equivalent CO_(2) per year, respectively. On the other hand, the GHG emissions in the co-benefit scenarios of the SBT system and ABR–SBT system were 98 149 and 26 720 tons per year, respectively. Therefore, introducing co-benefit-type wastewater treatment to Indonesia’s fish-processing industry would significantly reduce pollution loads and GHG emissions. 展开更多
关键词 Indonesian fish-processing industry Co-benefit wastewater treatment greenhouse gas emission mitigation Anaerobic baffled reactor Swim-bed technology
下载PDF
Adaptive Deep Learning Model to Enhance Smart Greenhouse Agriculture
16
作者 Medhat A.Tawfeek Nacim Yanes +2 位作者 Leila Jamel Ghadah Aldehim Mahmood A.Mahmood 《Computers, Materials & Continua》 SCIE EI 2023年第11期2545-2564,共20页
The trend towards smart greenhouses stems from various factors,including a lack of agricultural land area owing to population concentration and housing construction on agricultural land,as well as water shortages.This... The trend towards smart greenhouses stems from various factors,including a lack of agricultural land area owing to population concentration and housing construction on agricultural land,as well as water shortages.This study proposes building a full farming adaptation model that depends on current sensor readings and available datasets from different agricultural research centers.The proposed model uses a one-dimensional convolutional neural network(CNN)deep learning model to control the growth of strategic crops,including cucumber,pepper,tomato,and bean.The proposed model uses the Internet of Things(IoT)to collect data on agricultural operations and then uses this data to control and monitor these operations in real time.This helps to ensure that crops are getting the right amount of fertilizer,water,light,and temperature,which can lead to improved yields and a reduced risk of crop failure.Our dataset is based on data collected from expert farmers,the photovoltaic construction process,agricultural engineers,and research centers.The experimental results showed that the precision,recall,F1-measures,and accuracy of the one-dimensional CNN for the tested dataset were approximately 97.3%,98.2%,97.25%,and 97.56%,respectively.The new smart greenhouse automation system was also evaluated on four crops with a high turnover rate.The system has been found to be highly effective in terms of crop productivity,temperature management and water conservation. 展开更多
关键词 greenhouse wireless sensor network deep learning Internet of Things strategic crops monitoring smart irrigation
下载PDF
Design of Diversified Intelligent Control System for Energy-saving Optimization of Solar Greenhouse in North China
17
作者 Yanmeng HE Baohui MA 《Asian Agricultural Research》 2023年第7期45-50,53,共7页
Intelligent greenhouse can promote the development of modern agriculture, realize the high quality and high yield of crops, and also bring greater economic benefits. In accordance with the climate conditions in northw... Intelligent greenhouse can promote the development of modern agriculture, realize the high quality and high yield of crops, and also bring greater economic benefits. In accordance with the climate conditions in northwest China, a set of intelligent control system for diversified environment of solar greenhouse was designed. The system divides the annual greenhouse control into six stages according to the optimal energy saving. It uses modern detection technology to collect the greenhouse environmental temperature, environmental humidity, soil humidity, CO_(2) concentration and illumination parameters under different working modes. It uses programmable logic control technology to realize the data processing of various parameters and the action control of rolling film, wet curtain fan and other actuators. It uses KingView monitoring software to realize the monitoring and manual control of greenhouse environment parameters. The operation results indicate that the control system runs stably and basically meets the control requirements. 展开更多
关键词 Solar greenhouse Energy-saving optimization Diversified Control Intelligent control
下载PDF
Remediation Technologies for Cadmium Contamination in Greenhouse Vegetable Fields
18
作者 Huiwei ZHAO Yiming LIU +4 位作者 Wenjun LIU Wei LIU Jing YANG Chuan LU Qiaoying ZHANG 《Meteorological and Environmental Research》 CAS 2023年第2期78-84,共7页
Based on the literature and experimental results, three kinds of soil amendments, namely rice biochar, hydroxyapatite and potassium dihydrogen phosphate(KH2PO4), and deeper ploughing were selected to evaluate the fiel... Based on the literature and experimental results, three kinds of soil amendments, namely rice biochar, hydroxyapatite and potassium dihydrogen phosphate(KH2PO4), and deeper ploughing were selected to evaluate the field application effect of soil amendments and agronomic measures on the remediation of Cd contamination in greenhouse vegetable fields. Cd-contaminated greenhouse screening was conducted from 2015 to 2017. In September 2017, comparative tests of eight treatments were performed, and a preferred test was performed in September 2018. The screening results of the contaminated areas indicated that the distribution of over-standard sites was uneven, and Cd content was significantly different. Over-standard rate of No.4 greenhouse was 83.33% and was the highest, and the average content of Cd in soil was 0.535 mg/kg. It was used as a comparative test greenhouse for eight treatments. No.1 greenhouse was selected as the preferred test greenhouse, with three over-standard plots having average Cd concentrations of 0.530, 0.568 and 0.792 mg/kg. The comparative test results showed that after 8 months of remediation, the content of available Cd in the treatment of hydroxyapatite+rice biochar+deeper ploughing(T6) was reduced by 32.55% compared with CK(the control) and 24.96% than 2 months of remediation. The content of available Cd using the treatment of potassium dihydrogen phosphate+rice biochar+deeper ploughing(T7) decreased by 47.88% compared with CK and 31.00% than 2 months of remediation. The preferred remediation test results showed that in the treatment of hydroxyapatite+rice biochar+deeper ploughing: the mean Cd content decreased from 0.489 to 0.372 mg/kg, reducing by 23.86%, and the mean did not exceed the standard. Compared with CK, the mean content of available Cd decreased by 10.71% after 8 months, and the lowest content of available Cd in three treatments was 0.133 mg/kg. In addition, the Cd content, bioconcentration factor(BCF) and translocation coefficient(TF) of bean aboveground plants were decreased by 15.86%, 23.68% and 25.77%, respectively when compared with CK. Rice biochar+hydroxyapatite +deeper ploughing is a favoured technology for the remediation of Cd-contaminated greenhouse vegetable fields. 展开更多
关键词 greenhouse vegetable fields Cd pollution Remediation technology Application study
下载PDF
Reducing Agricultural Emissions Carbon emissions from agriculture and food systems account for a full third of the world’s total greenhouse gas emissions
19
作者 Huang Jiang qin 《China Report ASEAN》 2023年第8期30-32,共3页
Persistently high temperatures this summer have brought climate change to the focal point of global attention.The Emissions Gap Report 2022 released by the United Nations Environment Programme found that the internati... Persistently high temperatures this summer have brought climate change to the focal point of global attention.The Emissions Gap Report 2022 released by the United Nations Environment Programme found that the international community is falling far short of the Paris Agreement goals.Policies currently in place point to a 2.8℃temperature rise by the end of the century.Only an urgent system-wide transformation can deliver the enormous cuts needed to limit greenhouse gas emissions by 2030. 展开更多
关键词 AGRICULTURAL greenhouse EMISSIONS
下载PDF
Effects of Different Irrigation Amounts on Water Consumption and Water Use Efficiency of Greenhouse Cucumber 被引量:6
20
作者 郭生虎 孔德杰 +2 位作者 张源沛 郑国宝 朱金霞 《Agricultural Science & Technology》 CAS 2010年第9期217-220,共4页
[Objective] This study was to investigate the effects of different irrigation amount on water consumption and water use efficiency of greenhouse cucumber.[Method]Under the condition of drip irrigation with different w... [Objective] This study was to investigate the effects of different irrigation amount on water consumption and water use efficiency of greenhouse cucumber.[Method]Under the condition of drip irrigation with different water amounts in sunlight greenhouse of the arid areas in Ningxia,the soil water was measured and the water consumption of crop was calculated.[Result]When irrigation amount was 563 mm,the water consumption as a whole gradually increased with the delay of growth period,reached peak during the thriving stage of fruit setting,and then gradually declined;in each treatment,the daily water consumption increased with the increasing of irrigation amount during each growth period.However,the consumption of soil moisture reduced with the significant increase of irrigation.563 mm of irrigation amount could meet the water requirements of cucumber and began to add water to soil,and water utilization efficiency could reach 33.4 kg/m3.[Conclusion]The research had provided theoretical basis for water management in the production process of greenhouse cucumber. 展开更多
关键词 greenhouse CUCUMBER Irrigation amount Water consumption Water utilization efficiency
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部