A 15-storey K-braced reinforced concrete model frame with irregular columns, i.e., T-shaped, L-shaped, as well as +-shaped columns, was constructed and tested on the six-degree-of-freedom shaking table at the State K...A 15-storey K-braced reinforced concrete model frame with irregular columns, i.e., T-shaped, L-shaped, as well as +-shaped columns, was constructed and tested on the six-degree-of-freedom shaking table at the State Key Laboratory for Disaster Reduction in Civil Engineering in Tongji, China. Two types of earthquake records, El-Centro wave (south-north direction) and Shanghai artificial wave (SHAW) with various peak accelerations and principal-secondary sequences, were input and experimentally studied. Based on the shaking table tests and theoretical analysis, several observations can be made. The failure sequence of the model structure is brace→beam→column→joints, so that the design philosophy for several lines of defense has been achieved. Earthquake waves with different spectrums not only influence the magnitude and distribution of the earthquake force and the storey shear force, but also obviously affect the magnitude of the displacement response. The aftershock seismic response of previously damaged reinforced concrete braced frames with irregular columns possesses the equivalent elastic performance characteristic. Generally speaking, from the aspects of failure features and drift ratio, this type of reinforced concrete structure provides adequate earthquake resistance and can be promoted for use in China.展开更多
Based on a series of previous studies, an experiment on the integral seismic behavior of a 1/3 scaled model of two-bay and three-story reinforced concrete frame with split columns at lower two stories is performed und...Based on a series of previous studies, an experiment on the integral seismic behavior of a 1/3 scaled model of two-bay and three-story reinforced concrete frame with split columns at lower two stories is performed under cyclic loading. The original columns at lower two stories of the model frame are short columns and they are replaced by the split columns. The hysteresis curves between the horizontal cyclic load and the lateral displacement at the top of the model frame, indicate that under the cyclic loading, the model frame undergoes the process of cracking, yielding, and maximum loading before being destroyed at the ultimate load. They also indicate that the model frame has better ductility, and the ratio of the ultimate displacement to the yielding displacement, reaches 6.0. The yielding process of the model frame shows that for the frame with split columns, plastic hinges are generated at the ends of beams and then the columns begin yielding while the frame still possesses the bearing and deformation capacity. The design idea of directly changing the short column to long one in the reinforced concrete frame may be realized by replacing the short column with the split one.展开更多
The fishbone model is a simplified numerical model for moment-resisting frames that is capable of modelling the effects of column-beam strength and stiffness ratios. The applicability of the fishbone model in simulati...The fishbone model is a simplified numerical model for moment-resisting frames that is capable of modelling the effects of column-beam strength and stiffness ratios. The applicability of the fishbone model in simulating the seismic responses of reinforced concrete moment-resisting frames of different sets of column-beam strength and stiffness ratios are evaluated through nonlinear static, dynamic and incremental dynamic analysis on six prototype buildings of 4-, 8-and 12-stories. The results show that the fishbone model is practically accurate enough for reinforced concrete frames, although the assumption of equal joint rotation does not hold in all cases. In addition to the ground motion characteristics and the number of stories in the structures, the accuracy of the model also varies with the column-beam stiffness and strength ratios. The model performs better for strong column-weak beam frames, in which the lateral drift patterns are better controlled by the continuous stiffness provided by the strong columns. When the inelastic deformation is large, the accuracy of the model may be subjected to large record-to-record variability. This is especially the case for frames of weak columns.展开更多
In order to get the formulae for calculating the equivalent frame width coefficient of reinforced concrete hollow slab-column structures with edge beam,the finite element structural program was used in the elastic ana...In order to get the formulae for calculating the equivalent frame width coefficient of reinforced concrete hollow slab-column structures with edge beam,the finite element structural program was used in the elastic analysis of reinforced concrete hollow slab-column structure with different dimensions to study internal relationship between effective beam width and the frame dimensions.In addition,the formulas for calculating the increasing coefficient of edge beam were also obtained.展开更多
Global failure mechanism, i.e., the strong-column weak-beam mechanism, can provide higher total energy dissipation capacity with less ductility demand on components than other failure modes, and results in a more unif...Global failure mechanism, i.e., the strong-column weak-beam mechanism, can provide higher total energy dissipation capacity with less ductility demand on components than other failure modes, and results in a more uniform story drift distribution and higher resistance to earthquake loads at the system level. However, the current code-based elastic design method cannot guarantee the global failure mechanism of frame structures under severe earthquakes. In this paper, a simple, but practical design procedure is proposed to ensure the global failure mechanism of reinforced concrete(RC) frame structures by redesigning the columns using the column tree method(CTM). CTM considers the yield limit state of all beams and column bases. The code-based design is firstly carried out to determine the section information of all beams and base columns. Then, the internal force demands applied on the column tree can be derived. Lastly, the column moments, shear forces and axial forces are determined according to the free-body diagram of CTM to finish the column redesign. Two RC frame structures with 6 and 12 stories are illustrated to verify the design procedure. The analytical results demonstrate the proposed approach can realize the global failure mechanism.展开更多
Carbon fiber reinforced polymer(CFRP)materials are important reinforcing substances which are widely used in the shear strengthening of seismic-damage steel reinforced concrete(SRC)frame structures.To investigate the ...Carbon fiber reinforced polymer(CFRP)materials are important reinforcing substances which are widely used in the shear strengthening of seismic-damage steel reinforced concrete(SRC)frame structures.To investigate the shear strength of SRC frame columns strengthened with CFRP sheets,experimental observations on eight seismic?damaged SRC frame columns strengthened with CFRP sheets were conducted at Yangtze University and existing experimental data of 49 SRC columns are presented.Based on the existing experiments,the theories of damage degree,zoning analysis of concrete,and strengthening material of the column are adopted.To present the expression formula of the shear strength of SRC frame columns strengthened with CFRP sheets,the contributions of strengthening material and transverse reinforcement to shear strength in the truss model are considered,based on the truss-arch model.The contribution of arch action is also considered through the analysis of the whole concrete and that of the three zones of the concrete are also considered.The formula is verified,and the calculated results are found to match well with the experimental results.Results indicate that the proposed whole analysis model can improve the accuracy of shear strength predictions of shear seismic-damaged SRC frame columns reinforced with CFRP sheets.展开更多
文摘A 15-storey K-braced reinforced concrete model frame with irregular columns, i.e., T-shaped, L-shaped, as well as +-shaped columns, was constructed and tested on the six-degree-of-freedom shaking table at the State Key Laboratory for Disaster Reduction in Civil Engineering in Tongji, China. Two types of earthquake records, El-Centro wave (south-north direction) and Shanghai artificial wave (SHAW) with various peak accelerations and principal-secondary sequences, were input and experimentally studied. Based on the shaking table tests and theoretical analysis, several observations can be made. The failure sequence of the model structure is brace→beam→column→joints, so that the design philosophy for several lines of defense has been achieved. Earthquake waves with different spectrums not only influence the magnitude and distribution of the earthquake force and the storey shear force, but also obviously affect the magnitude of the displacement response. The aftershock seismic response of previously damaged reinforced concrete braced frames with irregular columns possesses the equivalent elastic performance characteristic. Generally speaking, from the aspects of failure features and drift ratio, this type of reinforced concrete structure provides adequate earthquake resistance and can be promoted for use in China.
基金Supported by National Science Fund for Distinguished Young Scholars of China( No. 50425824
文摘Based on a series of previous studies, an experiment on the integral seismic behavior of a 1/3 scaled model of two-bay and three-story reinforced concrete frame with split columns at lower two stories is performed under cyclic loading. The original columns at lower two stories of the model frame are short columns and they are replaced by the split columns. The hysteresis curves between the horizontal cyclic load and the lateral displacement at the top of the model frame, indicate that under the cyclic loading, the model frame undergoes the process of cracking, yielding, and maximum loading before being destroyed at the ultimate load. They also indicate that the model frame has better ductility, and the ratio of the ultimate displacement to the yielding displacement, reaches 6.0. The yielding process of the model frame shows that for the frame with split columns, plastic hinges are generated at the ends of beams and then the columns begin yielding while the frame still possesses the bearing and deformation capacity. The design idea of directly changing the short column to long one in the reinforced concrete frame may be realized by replacing the short column with the split one.
基金Scientific Research Fund of Institute of Engineering Mechanics,China Earthquake Administration under Grant Nos.2016A05 and 2016A06National Natural Science Foundation of China under Grant No.51478441
文摘The fishbone model is a simplified numerical model for moment-resisting frames that is capable of modelling the effects of column-beam strength and stiffness ratios. The applicability of the fishbone model in simulating the seismic responses of reinforced concrete moment-resisting frames of different sets of column-beam strength and stiffness ratios are evaluated through nonlinear static, dynamic and incremental dynamic analysis on six prototype buildings of 4-, 8-and 12-stories. The results show that the fishbone model is practically accurate enough for reinforced concrete frames, although the assumption of equal joint rotation does not hold in all cases. In addition to the ground motion characteristics and the number of stories in the structures, the accuracy of the model also varies with the column-beam stiffness and strength ratios. The model performs better for strong column-weak beam frames, in which the lateral drift patterns are better controlled by the continuous stiffness provided by the strong columns. When the inelastic deformation is large, the accuracy of the model may be subjected to large record-to-record variability. This is especially the case for frames of weak columns.
文摘In order to get the formulae for calculating the equivalent frame width coefficient of reinforced concrete hollow slab-column structures with edge beam,the finite element structural program was used in the elastic analysis of reinforced concrete hollow slab-column structure with different dimensions to study internal relationship between effective beam width and the frame dimensions.In addition,the formulas for calculating the increasing coefficient of edge beam were also obtained.
基金supported by the National Natural Science Foundation of China(Grant Nos.51261120376 and 91315301)Scholarship Award for Excellent Doctoral Student granted by Ministry of Education of China
文摘Global failure mechanism, i.e., the strong-column weak-beam mechanism, can provide higher total energy dissipation capacity with less ductility demand on components than other failure modes, and results in a more uniform story drift distribution and higher resistance to earthquake loads at the system level. However, the current code-based elastic design method cannot guarantee the global failure mechanism of frame structures under severe earthquakes. In this paper, a simple, but practical design procedure is proposed to ensure the global failure mechanism of reinforced concrete(RC) frame structures by redesigning the columns using the column tree method(CTM). CTM considers the yield limit state of all beams and column bases. The code-based design is firstly carried out to determine the section information of all beams and base columns. Then, the internal force demands applied on the column tree can be derived. Lastly, the column moments, shear forces and axial forces are determined according to the free-body diagram of CTM to finish the column redesign. Two RC frame structures with 6 and 12 stories are illustrated to verify the design procedure. The analytical results demonstrate the proposed approach can realize the global failure mechanism.
基金The experiments by Peng et al.[2]were carried out in the Civil Engineering Experiment Center of Yangtze University,China.This research was funded by the National Natural Science Foundation of China(Grant Nos.5147804851678457),Natural Science Foundation of Hubei Province(Innovation group)of China(No.2015CFA029)and their support is gratefully acknowledged.
文摘Carbon fiber reinforced polymer(CFRP)materials are important reinforcing substances which are widely used in the shear strengthening of seismic-damage steel reinforced concrete(SRC)frame structures.To investigate the shear strength of SRC frame columns strengthened with CFRP sheets,experimental observations on eight seismic?damaged SRC frame columns strengthened with CFRP sheets were conducted at Yangtze University and existing experimental data of 49 SRC columns are presented.Based on the existing experiments,the theories of damage degree,zoning analysis of concrete,and strengthening material of the column are adopted.To present the expression formula of the shear strength of SRC frame columns strengthened with CFRP sheets,the contributions of strengthening material and transverse reinforcement to shear strength in the truss model are considered,based on the truss-arch model.The contribution of arch action is also considered through the analysis of the whole concrete and that of the three zones of the concrete are also considered.The formula is verified,and the calculated results are found to match well with the experimental results.Results indicate that the proposed whole analysis model can improve the accuracy of shear strength predictions of shear seismic-damaged SRC frame columns reinforced with CFRP sheets.