A matrix encoding scheme for the steelmaking continuous casting( SCC) production scheduling( SCCPS) problem and the corresponding decoding method are proposed. Based on it,a cross entropy( CE) method is adopted and an...A matrix encoding scheme for the steelmaking continuous casting( SCC) production scheduling( SCCPS) problem and the corresponding decoding method are proposed. Based on it,a cross entropy( CE) method is adopted and an improved cross entropy( ICE) algorithm is proposed to solve the SCCPS problem to minimize total power consumption. To describe the distribution of the solution space of the CE method,a probability model is built and used to generate individuals by sampling and a probability updating mechanism is introduced to trace the promising samples. For the ICE algorithm,some samples are generated by the heuristic rules for the shortest makespan due to the relation between the makespan and the total power consumption,which can reduce the search space greatly. The optimal sample in each iteration is retained through a retention mechanism to ensure that the historical optimal sample is not lost so as to improve the efficiency and global convergence. A local search procedure is carried out on a part of better samples so as to improve the local exploitation capability of the ICE algorithm and get a better result. The parameter setting is investigated by the Taguchi method of design-of-experiment. A number of simulation experiments are implemented to validate the effectiveness of the ICE algorithm in solving the SCCPS problem and also the superiority of the ICE algorithm is verified through the comparison with the standard cross entropy( SCE) algorithm.展开更多
In order to increase productivity and reduce energy consumption of steelmaking-continuous casting(SCC) production process, especially with complicated technological routes, the cross entropy(CE) method was adopted to ...In order to increase productivity and reduce energy consumption of steelmaking-continuous casting(SCC) production process, especially with complicated technological routes, the cross entropy(CE) method was adopted to optimize the SCC production scheduling(SCCPS) problem. Based on the CE method, a matrix encoding scheme was proposed and a backward decoding method was used to generate a reasonable schedule. To describe the distribution of the solution space, a probability distribution model was built and used to generate individuals. In addition, the probability updating mechanism of the probability distribution model was proposed which helps to find the optimal individual gradually. Because of the poor stability and premature convergence of the standard cross entropy(SCE) algorithm, the improved cross entropy(ICE) algorithm was proposed with the following improvements: individual generation mechanism combined with heuristic rules, retention mechanism of the optimal individual, local search mechanism and dynamic parameters of the algorithm. Simulation experiments validate that the CE method is effective in solving the SCCPS problem with complicated technological routes and the ICE algorithm proposed has superior performance to the SCE algorithm and the genetic algorithm(GA).展开更多
Steelmaking–refining–Continuous Casting(SCC) scheduling is a worldwide problem, which is NP-hard. Effective SCC scheduling algorithms can help to enhance productivity, and thus make significant monetary savings. Thi...Steelmaking–refining–Continuous Casting(SCC) scheduling is a worldwide problem, which is NP-hard. Effective SCC scheduling algorithms can help to enhance productivity, and thus make significant monetary savings. This paper develops an Improved Artificial Bee Colony(IABC) algorithm for the SCC scheduling. In the proposed IABC, charge permutation is employed to represent the solutions. In the population initialization, several solutions with certain quality are produced by a heuristic while others are generated randomly. Two variable neighborhood search neighborhood operators are devised to generate new high-quality solutions for the employed bee and onlooker bee phases, respectively. Meanwhile, in order to enhance the exploitation ability, a control parameter is introduced to conduct the search of onlooker bee phase. Moreover, to enhance the exploration ability,the new generated solutions are accepted with a control acceptance criterion. In the scout bee phase, the solution corresponding to a scout bee is updated by performing three swap operators and three insert operators with equal probability. Computational comparisons against several recent algorithms and a state-of-the-art SCC scheduling algorithm have demonstrated the strength and superiority of the IABC.展开更多
The quantitative evaluation of multi-process collaborative operation is of great significance for the improvement of production planning and scheduling in steelmaking–continuous casting sections(SCCSs). However, this...The quantitative evaluation of multi-process collaborative operation is of great significance for the improvement of production planning and scheduling in steelmaking–continuous casting sections(SCCSs). However, this evaluation is difficult since it relies on an in-depth understanding of the operating mechanism of SCCSs, and few existing methods can be used to conduct the evaluation, due to the lack of full-scale consideration of the multiple factors related to the production operation. In this study, three quantitative models were developed, and the multiprocess collaborative operation level was evaluated through the laminar-flow operation degree, the process matching degree, and the scheduling strategy availability degree. Based on the evaluation models for the laminar-flow operation and process matching levels, this study investigated the production status of two steelmaking plants, plants A and B, based on actual production data. The average laminar-flow operation(process matching) degrees of SCCSs were obtained as 0.638(0.610) and 1.000(0.759) for plants A and B, respectively, for the period of April to July 2019. Then, a scheduling strategy based on the optimization of the furnace-caster coordinating mode was suggested for plant A. Simulation experiments showed higher availability than the greedy-based and manual strategies. After the proposed scheduling strategy was applied,the average process matching degree of the SCCS of plant A increased by 4.6% for the period of September to November 2019. The multi-process collaborative operation level was improved with fewer adjustments and interruptions in casting.展开更多
基金Key Project of Shandong Provincial Natural Science Foundation,China(No.ZR2010FZ001)National High-Tech Research and Development Program of China(863 Program)(No.2007AA04Z157)
文摘A matrix encoding scheme for the steelmaking continuous casting( SCC) production scheduling( SCCPS) problem and the corresponding decoding method are proposed. Based on it,a cross entropy( CE) method is adopted and an improved cross entropy( ICE) algorithm is proposed to solve the SCCPS problem to minimize total power consumption. To describe the distribution of the solution space of the CE method,a probability model is built and used to generate individuals by sampling and a probability updating mechanism is introduced to trace the promising samples. For the ICE algorithm,some samples are generated by the heuristic rules for the shortest makespan due to the relation between the makespan and the total power consumption,which can reduce the search space greatly. The optimal sample in each iteration is retained through a retention mechanism to ensure that the historical optimal sample is not lost so as to improve the efficiency and global convergence. A local search procedure is carried out on a part of better samples so as to improve the local exploitation capability of the ICE algorithm and get a better result. The parameter setting is investigated by the Taguchi method of design-of-experiment. A number of simulation experiments are implemented to validate the effectiveness of the ICE algorithm in solving the SCCPS problem and also the superiority of the ICE algorithm is verified through the comparison with the standard cross entropy( SCE) algorithm.
基金Project(ZR2014FM036)supported by Shandong Provincial Natural Science Foundation of ChinaProject(ZR2010FZ001)supported by the Key Program of Shandong Provincial Natural Science Foundation of China
文摘In order to increase productivity and reduce energy consumption of steelmaking-continuous casting(SCC) production process, especially with complicated technological routes, the cross entropy(CE) method was adopted to optimize the SCC production scheduling(SCCPS) problem. Based on the CE method, a matrix encoding scheme was proposed and a backward decoding method was used to generate a reasonable schedule. To describe the distribution of the solution space, a probability distribution model was built and used to generate individuals. In addition, the probability updating mechanism of the probability distribution model was proposed which helps to find the optimal individual gradually. Because of the poor stability and premature convergence of the standard cross entropy(SCE) algorithm, the improved cross entropy(ICE) algorithm was proposed with the following improvements: individual generation mechanism combined with heuristic rules, retention mechanism of the optimal individual, local search mechanism and dynamic parameters of the algorithm. Simulation experiments validate that the CE method is effective in solving the SCCPS problem with complicated technological routes and the ICE algorithm proposed has superior performance to the SCE algorithm and the genetic algorithm(GA).
基金Supported by the National Natural Science Foundation of China(51705177,51575212)the Program for New Century Excellent Talents in University(NCET-13-0106)the Program for HUST Academic Frontier Youth Team
文摘Steelmaking–refining–Continuous Casting(SCC) scheduling is a worldwide problem, which is NP-hard. Effective SCC scheduling algorithms can help to enhance productivity, and thus make significant monetary savings. This paper develops an Improved Artificial Bee Colony(IABC) algorithm for the SCC scheduling. In the proposed IABC, charge permutation is employed to represent the solutions. In the population initialization, several solutions with certain quality are produced by a heuristic while others are generated randomly. Two variable neighborhood search neighborhood operators are devised to generate new high-quality solutions for the employed bee and onlooker bee phases, respectively. Meanwhile, in order to enhance the exploitation ability, a control parameter is introduced to conduct the search of onlooker bee phase. Moreover, to enhance the exploration ability,the new generated solutions are accepted with a control acceptance criterion. In the scout bee phase, the solution corresponding to a scout bee is updated by performing three swap operators and three insert operators with equal probability. Computational comparisons against several recent algorithms and a state-of-the-art SCC scheduling algorithm have demonstrated the strength and superiority of the IABC.
基金financially supported by the National Natural Science Foundation of China (Nos.50874014 and 51974023)the Fundamental Research Funds for Central Universities (No.FRF-BR-17-029A)。
文摘The quantitative evaluation of multi-process collaborative operation is of great significance for the improvement of production planning and scheduling in steelmaking–continuous casting sections(SCCSs). However, this evaluation is difficult since it relies on an in-depth understanding of the operating mechanism of SCCSs, and few existing methods can be used to conduct the evaluation, due to the lack of full-scale consideration of the multiple factors related to the production operation. In this study, three quantitative models were developed, and the multiprocess collaborative operation level was evaluated through the laminar-flow operation degree, the process matching degree, and the scheduling strategy availability degree. Based on the evaluation models for the laminar-flow operation and process matching levels, this study investigated the production status of two steelmaking plants, plants A and B, based on actual production data. The average laminar-flow operation(process matching) degrees of SCCSs were obtained as 0.638(0.610) and 1.000(0.759) for plants A and B, respectively, for the period of April to July 2019. Then, a scheduling strategy based on the optimization of the furnace-caster coordinating mode was suggested for plant A. Simulation experiments showed higher availability than the greedy-based and manual strategies. After the proposed scheduling strategy was applied,the average process matching degree of the SCCS of plant A increased by 4.6% for the period of September to November 2019. The multi-process collaborative operation level was improved with fewer adjustments and interruptions in casting.