针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提...针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提出了基于GWO-P&O的混合优化最大功率点跟踪(Maximum power point tracking,MPPT)算法。首先,采用灰狼优化算法逐渐向光伏的全局最大功率点靠近。其次,在灰狼优化算法收敛后期引入P&O法,既保持了灰狼优化算法较高的稳态精度,又能以较快速度寻找到局部最大功率点。最后,在不同环境工况下,将所提出的GWO-P&O方法与传统GWO算法进行对比。结果表明,改进的GWO-P&O算法在保证良好稳态性能的同时,一定程度上提高了GWO算法后期跟踪最大功率时的收敛速度。展开更多
针对功率预测算法下光伏最大功率点跟踪(maximum power point tracking,MPPT)系统中存在误判情况的问题,提出一种基于拉格朗日插值法改进功率预测的光伏变步长扰动观察法。首先,通过拉格朗日插值法建立插值模型,以减少预测功率值与实际...针对功率预测算法下光伏最大功率点跟踪(maximum power point tracking,MPPT)系统中存在误判情况的问题,提出一种基于拉格朗日插值法改进功率预测的光伏变步长扰动观察法。首先,通过拉格朗日插值法建立插值模型,以减少预测功率值与实际功率值的偏差;其次,通过对反正切函数归一化的变步长追踪方法改善算法在辐照强度变化及追踪过程中变步长方法引起较大振荡的问题;最后,基于MATLAB/Simulink开展与传统扰动观察法及功率预测算法对比的试验。结果表明:改进功率预测变步长扰动观察法改善误判和失效问题的效果更好。展开更多
基金supported by National Natural Science Foundation of China(No.52067013)Natural Science Foundation of Gansu Province(No.21JR7RA280)。
文摘针对局部遮阴环境下传统灰狼优化(Gray wolf optimization,GWO)算法在跟踪最大功率点时P-U特性曲线出现多峰值、后期收敛速度慢、稳态精度低等问题,结合灰狼优化算法和扰动观察法(Perturbation and observation,P&O)各自的优势,提出了基于GWO-P&O的混合优化最大功率点跟踪(Maximum power point tracking,MPPT)算法。首先,采用灰狼优化算法逐渐向光伏的全局最大功率点靠近。其次,在灰狼优化算法收敛后期引入P&O法,既保持了灰狼优化算法较高的稳态精度,又能以较快速度寻找到局部最大功率点。最后,在不同环境工况下,将所提出的GWO-P&O方法与传统GWO算法进行对比。结果表明,改进的GWO-P&O算法在保证良好稳态性能的同时,一定程度上提高了GWO算法后期跟踪最大功率时的收敛速度。
文摘针对功率预测算法下光伏最大功率点跟踪(maximum power point tracking,MPPT)系统中存在误判情况的问题,提出一种基于拉格朗日插值法改进功率预测的光伏变步长扰动观察法。首先,通过拉格朗日插值法建立插值模型,以减少预测功率值与实际功率值的偏差;其次,通过对反正切函数归一化的变步长追踪方法改善算法在辐照强度变化及追踪过程中变步长方法引起较大振荡的问题;最后,基于MATLAB/Simulink开展与传统扰动观察法及功率预测算法对比的试验。结果表明:改进功率预测变步长扰动观察法改善误判和失效问题的效果更好。