期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Proposal of a Deuterium-Deuterium Fusion Reactor Intended for a Large Power Plant
1
作者 Patrick Lindecker 《World Journal of Nuclear Science and Technology》 CAS 2024年第1期1-58,共58页
This article looks for the necessary conditions to use Deuterium-Deuterium (D-D) fusion for a large power plant. At the moment, for nearly all the projects (JET, ITER…) only the Deuterium-Tritium (D-T) fuel is consid... This article looks for the necessary conditions to use Deuterium-Deuterium (D-D) fusion for a large power plant. At the moment, for nearly all the projects (JET, ITER…) only the Deuterium-Tritium (D-T) fuel is considered for a power plant. However, as shown in this article, even if a D-D reactor would be necessarily much bigger than a D-T reactor due to the much weaker fusion reactivity of the D-D fusion compared to the D-T fusion, a D-D reactor size would remain under an acceptable size. Indeed, a D-D power plant would be necessarily large and powerful, i.e. the net electric power would be equal to a minimum of 1.2 GWe and preferably above 10 GWe. A D-D reactor would be less complex than a D-T reactor as it is not necessary to obtain Tritium from the reactor itself. It is proposed the same type of reactor yet proposed by the author in a previous article, i.e. a Stellarator “racetrack” magnetic loop. The working of this reactor is continuous. It is reminded that the Deuterium is relatively abundant on the sea water, and so it constitutes an almost inexhaustible source of energy. Thanks to secondary fusions (D-T and D-He3) which both occur at an appreciable level above 100 keV, plasma can stabilize around such high equilibrium energy (i.e. between 100 and 150 keV). The mechanical gain (Q) of such reactor increases with the internal pipe radius, up to 4.5 m. A radius of 4.5 m permits a mechanical gain (Q) of about 17 which thanks to a modern thermo-dynamical conversion would lead to convert about 21% of the thermal power issued from the D-D reactor in a net electric power of 20 GWe. The goal of the article is to create a physical model of the D-D reactor so as to estimate this one without the need of a simulator and finally to estimate the dimensions, power and yield of such D-D reactor for different net electrical powers. The difficulties of the modeling of such reactor are listed in this article and would certainly be applicable to a future D-He3 reactor, if any. 展开更多
关键词 Fusion reactor Deuterium-Deuterium reactor Catalyzed D-D Colliding Beams stellarator reactor Power Plant
下载PDF
Life Origin in the Milky Way Galaxy: III. Spatial Distribution of Overheated Stars in the Solar Neighborhood
2
作者 Alexander N. Safronov 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第2期693-709,共17页
A concept of ensemble averaged stellar reactors is developed to study the dynamics of processes occurring in stars, allocated in the ~200 pc solar neighborhood. According to the effective temperature value, four stell... A concept of ensemble averaged stellar reactors is developed to study the dynamics of processes occurring in stars, allocated in the ~200 pc solar neighborhood. According to the effective temperature value, four stellar classes are identified, for which the correlation coefficients and standard deviation are counted. The theory of the buoyancy terrestial elements is generalized to stellar systems. It was suggested that stars are over-heated due to the shift parameters of the nuclear processes occurring inside the stars, which leads to the synthesis of transuranium elements until the achievement of a critical nuclear mass and star explosion. The heavy transuranium elements sink downward and are concentrated in the stellar depth layers. The physical explanation of the existence of the critical Chandrasekhar star limit has been offered. Based on the spatial analysis of overheated stars, it was suggested that the withdrawal of the stellar reactor from the equilibrium state is a consequence of extragalactic compression inside the galaxy arm due to the arm spirality (not to be confused with the spirality of the galaxy itself). 展开更多
关键词 Stellar Nucleogenesis Ensemble-Averaged Stellar reactor Overheated Stars Chandrasekhar Stellar Limit Arm Spirality
下载PDF
Life Origin in the Milky Way Galaxy: I. The Stellar Nucleogenesis of Elements Necessary for the Life Origin
3
作者 Alexander N. Safronov 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第2期647-680,共34页
Chemical elements in space can be synthesized by stellar nuclear reactors. Studying the dynamics of processes occurring in the stars introduces a concept of the ensemble-averaged stellar reactor. For future interstell... Chemical elements in space can be synthesized by stellar nuclear reactors. Studying the dynamics of processes occurring in the stars introduces a concept of the ensemble-averaged stellar reactor. For future interstellar missions, the terrestrial and solar abundances were compared with considerable number of stars allocated in the ~200 pc solar neighborhood. According to the value of the effective temperature, four stellar classes are distinguished, for which the correlation coefficients and standard deviation are calculated. The statement about the possibility of transferring heavy elements synthesized by stars over long distances in space has been completely refuted. There is no immutability of the distribution of elements on neighboring stars and in the Solar System. It is shown that chemical elements are mainly synthesized inside each stellar reactor. The theory of the buoyancy of elements is generalized to stars. It has been suggested that stars overheat due to a shift in the parameters of nuclear processes occurring inside stars, which leads to the synthesis of heavy elements. 展开更多
关键词 Stellar Nucleogenesis Solar Abundance Ensemble-Averaged Stellar reactor Stellar Abundance Interstellar Mission HABITABILITY DNA-Star
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部