Recent regenerative medicine and tissue engineering strategies(using cells, scaffolds, medical devices and gene therapy) have led to fascinating progress of translation of basic research towards clinical applications....Recent regenerative medicine and tissue engineering strategies(using cells, scaffolds, medical devices and gene therapy) have led to fascinating progress of translation of basic research towards clinical applications. In the past decade, great deal of research has focused on developing various three dimensional(3D) organs, such as bone, skin, liver, kidney and ear,using such strategies in order to replace or regenerate damaged organs for the purpose of maintaining or restoring organs' functions that may have been lost due to aging, accident or disease. The surface properties of a material or a device are key aspects in determining the success of the implant in biomedicine, as the majority of biological reactions in human body occur on surfaces or interfaces. Furthermore, it has been established in the literature that cell adhesion and proliferation are, to a great extent, influenced by the micro- and nanosurface characteristics of biomaterials and devices. In addition, it has been shown that the functions of stem cells, mesenchymal stem cells in particular, could be regulated through physical interaction with specific nanotopographical cues. Therefore, guided stem cell proliferation, differentiation and function are of great importance in the regeneration of 3D tissues and organs using tissue engineering strategies. This review will provide an update on the impact of nanotopography on mesenchymal stem cells for the purpose of developing laboratory-based 3D organs and tissues, as well as the most recent research and case studies on this topic.展开更多
The application of autologous fat grafting in reconstructive surgery is commonly used to improve functional form.This review aims to provide an overview of the scientific evidence on the biology of adipose tissue,the ...The application of autologous fat grafting in reconstructive surgery is commonly used to improve functional form.This review aims to provide an overview of the scientific evidence on the biology of adipose tissue,the role of adipose-derived stem cells,and the indications of adipose tissue grafting in peripheral nerve surgery.Adipose tissue is easily accessible through the lower abdomen and inner thighs.Non-vascularized adipose tissue grafting does not support oxidative and ischemic stress,resulting in variable survival of adipocytes within the first 24 hours.Enrichment of adipose tissue with a stromal vascular fraction is purported to increase the number of adipose-derived stem cells and is postulated to augment the long-term stability of adipose tissue grafts.Basic science nerve research suggests an increase in nerve regeneration and nerve revascularization,and a decrease in nerve fibrosis after the addition of adipose-derived stem cells or adipose tissue.In clinical studies,the use of autologous lipofilling is mostly applied to secondary carpal tunnel release revisions with promising results.Since the use of adipose-derived stem cells in peripheral nerve reconstruction is relatively new,more studies are needed to explore safety and long-term effects on peripheral nerve regeneration.The Food and Drug Administration stipulates that adipose-derived stem cell transplantation should be minimally manipulated,enzyme-free,and used in the same surgical procedure,e.g.adipose tissue grafts that contain native adipose-derived stem cells or stromal vascular fraction.Future research may be shifted towards the use of tissue-engineered adipose tissue to create a supportive microenvironment for autologous graft survival.Shelf-ready alternatives could be enhanced with adipose-derived stem cells or growth factors and eliminate the need for adipose tissue harvest.展开更多
Pelvic organ prolapse(POP) occurs when the pelvic organs(bladder, bowel or uterus) herniate into the vagina, causing incontinence, voiding, bowel and sexual dysfunction, negatively impacting upon a woman's quality...Pelvic organ prolapse(POP) occurs when the pelvic organs(bladder, bowel or uterus) herniate into the vagina, causing incontinence, voiding, bowel and sexual dysfunction, negatively impacting upon a woman's quality of life. POP affects 25% of all women and results from childbirth injury. For 19% of all women, surgical reconstructive surgery is required for treatment, often augmented with surgical mesh. The surgical treatment fails in up to 30% of cases or results in adverse effects, such as pain and mesh erosion into the bladder, bowel or vagina. Due to these complications the Food and Drug Administration cautioned against the use of vaginal mesh and several major brands have been recently been withdrawn from market. In this review we will discuss new cell-based approaches being developed for the treatment of POP. Several cell types have been investigated in animal models, including a new source of mesenchymal stem/stromal cells(MSC) derived from human endometrium. The unique characteristics of endometrial MSC, methods for their isolation and purification and steps towards their development for good manufacturing practice production will be described. Animal models that could be used to examine the potential for this approach will also be discussed as will a rodent model showing promise in developing an endometrial MSC-based therapy for POP. The development of a preclinical large animal model for assessing tissue engineering constructs for treating POP will also be mentioned.展开更多
We have previously reported on both the osteogenic potential of hydroxyapatite (HA) combined with bone marrow-derived mesenchymal stem cells (BMSCs) and a method involving osteogenic matrix cell sheet transplantation ...We have previously reported on both the osteogenic potential of hydroxyapatite (HA) combined with bone marrow-derived mesenchymal stem cells (BMSCs) and a method involving osteogenic matrix cell sheet transplantation of BMSCs. In the present study, we assessed the osteogenic potential of serially-passaged BMSCs, both in vitro and in vivo. We also assessed whether an additional cell-loading technique can regain the osteogenic potential of the constructs combined with serially-passaged BMSCs. The present study revealed that passage (P) 1 cells cultured in osteogenic-induced medium showed strong positive staining for alkaline phosphatase (ALP) and Alizarin Red S, whereas P3 cells showed faint staining for ALP, with no Alizarin Red S staining. Staining of P1, P2 and P3 cells were progressively weaker, indicating that the osteogenic potential of the serially-passaged rat BMSCs is lost after P3 in vitro. The in vivo study showed that little bone formation was observed in the HA constructs seeded with P3 cells, 4 weeks after subcutaneous implantation. However, P3 cell/HA constructs which had increased cell-loading showed abundant bone formation within the pores of the HA construct. ALP and osteocalcin mRNA expression in these constructs was significantly higher than that of constructs with regular cell-seeding. The present study indicates that the osteogenic potential of the constructs with serially-passaged BMSCs is increased by additional cell-loading. This method can be applied to cases requiring hard tissue reconstruction, where BMSCs require serial expansion of cells.展开更多
Organ transplantation is the ultimate treatment for end-stage diseases such as heart and liver failure.However,the severe shortage of donor organs has limited the organ transplantation progress.Xenogeneic stem cell tr...Organ transplantation is the ultimate treatment for end-stage diseases such as heart and liver failure.However,the severe shortage of donor organs has limited the organ transplantation progress.Xenogeneic stem cell transplantation provides a new strategy to solve this problem.Researchers have shown that xenogeneic stem cell transplantation has significant therapeutic effects and broad application prospects in treating liver failure,myocardial infarction,advanced type 1 diabetes mellitus,myelosuppression,and other end-stage diseases by replacing the dysfunctional cells directly or improving the endogenous regenerative milieu.In this review,the sources,problems and solutions,and potential clinical applications of xenogeneic stem cell transplantation will be discussed.展开更多
The knee is a multi-component organ system comprised of several tissues which function coordinately to provide mobility. Injury to any one component compromises the integrity of the system and leads to adaptation of t...The knee is a multi-component organ system comprised of several tissues which function coordinately to provide mobility. Injury to any one component compromises the integrity of the system and leads to adaptation of the other components. Over time, such events often lead to dysfunction and degeneration of the knee. Therefore, there has been considerable research emphasis to repair injured components in the knee including cartilage, menisci, and ligaments. Approaches to improving healing and repair/regeneration of knee tissues have included surgery, anti-sense gene therapy, injection of growth factors and inflammatory cytokine antagonists, transplantation of in vitro expanded chondrocytes, enhancement of endogenous cells via microfracture, injection of mesenchymal stem cells, and implantation of in vitro tissue engineered constructs. Some of these approaches have lead to temporary improvement in knee functioning, while others offer the potential to restore function and tissue integrity for longer periods of time. This article will review the status of many of these approaches, and provide a perspective on their limitations and potential to contribute to restoration of knee function across the lifespan.展开更多
We are now well entering the exciting era of stem cells.Potential stem cell therapy holds great promise for the treatment of many diseases such as stroke,traumatic brain injury,Alzheimer’s disease,Parkinson’s diseas...We are now well entering the exciting era of stem cells.Potential stem cell therapy holds great promise for the treatment of many diseases such as stroke,traumatic brain injury,Alzheimer’s disease,Parkinson’s disease,amyotrophic lateral-sclerosis,myocardial infarction,muscular dystrophy,diabetes,and etc..It is generally believed that transplantation of specific stem cells into the injured tissue to replace the lost cells is an effective way to repair the tissue.In fact,organ transplantation has been successfully practiced in clinics for liver or kidney failure.However,the severe shortage of donor organs has been a major obstacle for the expansion of organ transplantation programs.Toward that direction,generation of transplantable organs using stem cells is a desirable approach for organ replacement and would be of great interest for both basic and clinical scientists.Here we review recent progress in the field of organ generation using various methods including single adult tissue stem cells,a blastocyst complementation system,tissue decellularization/recellularization and a combination of stem cells and tissue engineering.展开更多
AIM: To evaluate the biological functions of tissue-engineered human corneal epithelium (TE-HCEP) by corneal transplantation in limbal stem cell deficiency (LSCD) rabbit models. METHODS: TE-HCEPs were reconstructed wi...AIM: To evaluate the biological functions of tissue-engineered human corneal epithelium (TE-HCEP) by corneal transplantation in limbal stem cell deficiency (LSCD) rabbit models. METHODS: TE-HCEPs were reconstructed with DiI-labeled untransfected HCEP cells and denuded amniotic membrane (dAM) in air-liquid interface culture, and their morphology and structure were characterized by hematoxylin-eosin (HE) staining of paraffin-sections, immunohistochemistry and electron microscopy. LSCD models were established by mechanical and alcohol treatment of the left eyes of New Zealand white rabbits, and their eyes were transplanted with TE-HCEPs with dAM surface outside by lamellar keratoplasty (LKP). Corneal transparency, neovascularization, thickness, and epithelial integrality of both traumatic and post transplantation eyes were checked once a week by slit-lamp corneal microscopy, a corneal pachymeter, and periodic acid-Schiff (PAS) staining. At day 120 post surgery, the rabbits in each group were sacrificed and their corneas were examined by DiI label observation, HE staining, immunohistochemistry and electron microscopy. RESULTS: After cultured for 5 days on dAM, HCEP cells, maintaining keratin 3 expression, reconstructed a 6-7 layer TE-HCEP with normal morphology and structure. The traumatic rabbit corneas, entirely opaque, conjunctivalized and with invaded blood vessels, were used as LSCD models for TE-HCEP transplantation. After transplantation, obvious edema was not found in TE-HCEP-transplanted corneas which became more and more transparent, the invaded blood vessels reduced gradually throughout the monitoring period. The corneas decreased to normal thickness on day 25, while those of dAM eyes were over 575 mu m in thickness during the monitoring period. A 45 layer of epithelium consisting of TE-HCEP originated cells attached tightly to the anterior surface of stroma was reconstructed 120 days after TE-HCEP transplantation, which was similar to the normal control eye in morphology and structure. In contrast, intense corneal edema, turbid, invaded blood vessels were found in dAM eyes, and no multilayer epithelium was found but only a few scattered conjunctiva-like cells appeared. CONCLUSION: The TE-HCEP, with similar morphology and structure to those of innate HCEP, could reconstruct a multilayer corneal epithelium with normal functions in restoring corneal transparency and thickness of LSCD rabbits after transplantation. It may be a promising HCEP equivalent for clinical therapy of corneal epithelial disorders.展开更多
Blastocyst complementation by pluripotent stem cell(PSC)injection is believed to be the most promising method to generate xenogeneic organs.However,ethical issues prevent the study of human chimeras in the late embryo...Blastocyst complementation by pluripotent stem cell(PSC)injection is believed to be the most promising method to generate xenogeneic organs.However,ethical issues prevent the study of human chimeras in the late embryonic stage of development.Primate embryonic stem cells(ESCs),which have similar pluripotency to human ESCs,are a good model for studying interspecies chimerism and organ generation.However,whether primate ESCs can be used in xenogenous grafts remains unclear.In this study,we evaluated the chimeric ability of cynomolgus monkey(Macaca fascicularis)ESCs(cmESCs)in pigs,which are excellent hosts because of their many similarities to humans.We report an optimized culture medium that enhanced the anti-apoptotic ability of cmESCs and improved the development of chimeric embryos,in which domesticated cmESCs(D-ESCs)injected into pig blastocysts differentiated into cells of all three germ layers.In addition,we obtained two neonatal interspecies chimeras,in which we observed tissue-specific D-ESC differentiation.Taken together,the results demonstrate the capability of D-ESCs to integrate and differentiate into functional cells in a porcine model,with a chimeric ratio of 0.001-0.0001 in different neonate tissues.We believe this work will facilitate future developments in xenogeneic organogenesis,bringing us one step closer to producing tissue-specific functional cells and organs in a large animal model through interspecies blastocyst complementation.展开更多
Tissue engineering has provided new treatment alternatives for tissue reconstruction. Advances in the tissue engineeringfield have resulted in mechanical support and biological substitutes to restore, maintain or impr...Tissue engineering has provided new treatment alternatives for tissue reconstruction. Advances in the tissue engineeringfield have resulted in mechanical support and biological substitutes to restore, maintain or improve tissue/organs structuresand functions. The application of tissue engineering technology in the vaginal reconstruction treatment can not onlyprovide mechanical requirements, but also offer tissue repairing as an alternative to traditional approaches. In this review, wediscuss recent advances in cell-based therapy in combination with scaffolds strategies that can potentially be adopted forgynaecological transplantation.展开更多
文摘Recent regenerative medicine and tissue engineering strategies(using cells, scaffolds, medical devices and gene therapy) have led to fascinating progress of translation of basic research towards clinical applications. In the past decade, great deal of research has focused on developing various three dimensional(3D) organs, such as bone, skin, liver, kidney and ear,using such strategies in order to replace or regenerate damaged organs for the purpose of maintaining or restoring organs' functions that may have been lost due to aging, accident or disease. The surface properties of a material or a device are key aspects in determining the success of the implant in biomedicine, as the majority of biological reactions in human body occur on surfaces or interfaces. Furthermore, it has been established in the literature that cell adhesion and proliferation are, to a great extent, influenced by the micro- and nanosurface characteristics of biomaterials and devices. In addition, it has been shown that the functions of stem cells, mesenchymal stem cells in particular, could be regulated through physical interaction with specific nanotopographical cues. Therefore, guided stem cell proliferation, differentiation and function are of great importance in the regeneration of 3D tissues and organs using tissue engineering strategies. This review will provide an update on the impact of nanotopography on mesenchymal stem cells for the purpose of developing laboratory-based 3D organs and tissues, as well as the most recent research and case studies on this topic.
文摘The application of autologous fat grafting in reconstructive surgery is commonly used to improve functional form.This review aims to provide an overview of the scientific evidence on the biology of adipose tissue,the role of adipose-derived stem cells,and the indications of adipose tissue grafting in peripheral nerve surgery.Adipose tissue is easily accessible through the lower abdomen and inner thighs.Non-vascularized adipose tissue grafting does not support oxidative and ischemic stress,resulting in variable survival of adipocytes within the first 24 hours.Enrichment of adipose tissue with a stromal vascular fraction is purported to increase the number of adipose-derived stem cells and is postulated to augment the long-term stability of adipose tissue grafts.Basic science nerve research suggests an increase in nerve regeneration and nerve revascularization,and a decrease in nerve fibrosis after the addition of adipose-derived stem cells or adipose tissue.In clinical studies,the use of autologous lipofilling is mostly applied to secondary carpal tunnel release revisions with promising results.Since the use of adipose-derived stem cells in peripheral nerve reconstruction is relatively new,more studies are needed to explore safety and long-term effects on peripheral nerve regeneration.The Food and Drug Administration stipulates that adipose-derived stem cell transplantation should be minimally manipulated,enzyme-free,and used in the same surgical procedure,e.g.adipose tissue grafts that contain native adipose-derived stem cells or stromal vascular fraction.Future research may be shifted towards the use of tissue-engineered adipose tissue to create a supportive microenvironment for autologous graft survival.Shelf-ready alternatives could be enhanced with adipose-derived stem cells or growth factors and eliminate the need for adipose tissue harvest.
文摘Pelvic organ prolapse(POP) occurs when the pelvic organs(bladder, bowel or uterus) herniate into the vagina, causing incontinence, voiding, bowel and sexual dysfunction, negatively impacting upon a woman's quality of life. POP affects 25% of all women and results from childbirth injury. For 19% of all women, surgical reconstructive surgery is required for treatment, often augmented with surgical mesh. The surgical treatment fails in up to 30% of cases or results in adverse effects, such as pain and mesh erosion into the bladder, bowel or vagina. Due to these complications the Food and Drug Administration cautioned against the use of vaginal mesh and several major brands have been recently been withdrawn from market. In this review we will discuss new cell-based approaches being developed for the treatment of POP. Several cell types have been investigated in animal models, including a new source of mesenchymal stem/stromal cells(MSC) derived from human endometrium. The unique characteristics of endometrial MSC, methods for their isolation and purification and steps towards their development for good manufacturing practice production will be described. Animal models that could be used to examine the potential for this approach will also be discussed as will a rodent model showing promise in developing an endometrial MSC-based therapy for POP. The development of a preclinical large animal model for assessing tissue engineering constructs for treating POP will also be mentioned.
文摘We have previously reported on both the osteogenic potential of hydroxyapatite (HA) combined with bone marrow-derived mesenchymal stem cells (BMSCs) and a method involving osteogenic matrix cell sheet transplantation of BMSCs. In the present study, we assessed the osteogenic potential of serially-passaged BMSCs, both in vitro and in vivo. We also assessed whether an additional cell-loading technique can regain the osteogenic potential of the constructs combined with serially-passaged BMSCs. The present study revealed that passage (P) 1 cells cultured in osteogenic-induced medium showed strong positive staining for alkaline phosphatase (ALP) and Alizarin Red S, whereas P3 cells showed faint staining for ALP, with no Alizarin Red S staining. Staining of P1, P2 and P3 cells were progressively weaker, indicating that the osteogenic potential of the serially-passaged rat BMSCs is lost after P3 in vitro. The in vivo study showed that little bone formation was observed in the HA constructs seeded with P3 cells, 4 weeks after subcutaneous implantation. However, P3 cell/HA constructs which had increased cell-loading showed abundant bone formation within the pores of the HA construct. ALP and osteocalcin mRNA expression in these constructs was significantly higher than that of constructs with regular cell-seeding. The present study indicates that the osteogenic potential of the constructs with serially-passaged BMSCs is increased by additional cell-loading. This method can be applied to cases requiring hard tissue reconstruction, where BMSCs require serial expansion of cells.
基金National Natural Science Foundation of China,No.81670951.
文摘Organ transplantation is the ultimate treatment for end-stage diseases such as heart and liver failure.However,the severe shortage of donor organs has limited the organ transplantation progress.Xenogeneic stem cell transplantation provides a new strategy to solve this problem.Researchers have shown that xenogeneic stem cell transplantation has significant therapeutic effects and broad application prospects in treating liver failure,myocardial infarction,advanced type 1 diabetes mellitus,myelosuppression,and other end-stage diseases by replacing the dysfunctional cells directly or improving the endogenous regenerative milieu.In this review,the sources,problems and solutions,and potential clinical applications of xenogeneic stem cell transplantation will be discussed.
文摘The knee is a multi-component organ system comprised of several tissues which function coordinately to provide mobility. Injury to any one component compromises the integrity of the system and leads to adaptation of the other components. Over time, such events often lead to dysfunction and degeneration of the knee. Therefore, there has been considerable research emphasis to repair injured components in the knee including cartilage, menisci, and ligaments. Approaches to improving healing and repair/regeneration of knee tissues have included surgery, anti-sense gene therapy, injection of growth factors and inflammatory cytokine antagonists, transplantation of in vitro expanded chondrocytes, enhancement of endogenous cells via microfracture, injection of mesenchymal stem cells, and implantation of in vitro tissue engineered constructs. Some of these approaches have lead to temporary improvement in knee functioning, while others offer the potential to restore function and tissue integrity for longer periods of time. This article will review the status of many of these approaches, and provide a perspective on their limitations and potential to contribute to restoration of knee function across the lifespan.
基金The study is supported by funds from the Chinese Ministry of Science and Technology(2012CB966800 and 2013CB945600 to WQG and RY and 2012CB967900)the National Natural Science Foundation of China(81130038 to WQG,31171422 and 31230048 to ZH)+2 种基金Science and Technology Commission of Shanghai Municipality(Pujiang program to WQG,11PJ1406400 to ZH)Shanghai Education Committee Key Disciplines and Specialties Foundation(J50208 to WQG)Shanghai Health Bureau Key Disciplines and Specialties Foundation(to WQG),KC Wong foundation(to WQG)and the China Postdoctoral Science Foundation(2012M510835 to YYL).
文摘We are now well entering the exciting era of stem cells.Potential stem cell therapy holds great promise for the treatment of many diseases such as stroke,traumatic brain injury,Alzheimer’s disease,Parkinson’s disease,amyotrophic lateral-sclerosis,myocardial infarction,muscular dystrophy,diabetes,and etc..It is generally believed that transplantation of specific stem cells into the injured tissue to replace the lost cells is an effective way to repair the tissue.In fact,organ transplantation has been successfully practiced in clinics for liver or kidney failure.However,the severe shortage of donor organs has been a major obstacle for the expansion of organ transplantation programs.Toward that direction,generation of transplantable organs using stem cells is a desirable approach for organ replacement and would be of great interest for both basic and clinical scientists.Here we review recent progress in the field of organ generation using various methods including single adult tissue stem cells,a blastocyst complementation system,tissue decellularization/recellularization and a combination of stem cells and tissue engineering.
基金National High Technology Research and Development Program ("863"Program) of China (No.2006AA 02A132)
文摘AIM: To evaluate the biological functions of tissue-engineered human corneal epithelium (TE-HCEP) by corneal transplantation in limbal stem cell deficiency (LSCD) rabbit models. METHODS: TE-HCEPs were reconstructed with DiI-labeled untransfected HCEP cells and denuded amniotic membrane (dAM) in air-liquid interface culture, and their morphology and structure were characterized by hematoxylin-eosin (HE) staining of paraffin-sections, immunohistochemistry and electron microscopy. LSCD models were established by mechanical and alcohol treatment of the left eyes of New Zealand white rabbits, and their eyes were transplanted with TE-HCEPs with dAM surface outside by lamellar keratoplasty (LKP). Corneal transparency, neovascularization, thickness, and epithelial integrality of both traumatic and post transplantation eyes were checked once a week by slit-lamp corneal microscopy, a corneal pachymeter, and periodic acid-Schiff (PAS) staining. At day 120 post surgery, the rabbits in each group were sacrificed and their corneas were examined by DiI label observation, HE staining, immunohistochemistry and electron microscopy. RESULTS: After cultured for 5 days on dAM, HCEP cells, maintaining keratin 3 expression, reconstructed a 6-7 layer TE-HCEP with normal morphology and structure. The traumatic rabbit corneas, entirely opaque, conjunctivalized and with invaded blood vessels, were used as LSCD models for TE-HCEP transplantation. After transplantation, obvious edema was not found in TE-HCEP-transplanted corneas which became more and more transparent, the invaded blood vessels reduced gradually throughout the monitoring period. The corneas decreased to normal thickness on day 25, while those of dAM eyes were over 575 mu m in thickness during the monitoring period. A 45 layer of epithelium consisting of TE-HCEP originated cells attached tightly to the anterior surface of stroma was reconstructed 120 days after TE-HCEP transplantation, which was similar to the normal control eye in morphology and structure. In contrast, intense corneal edema, turbid, invaded blood vessels were found in dAM eyes, and no multilayer epithelium was found but only a few scattered conjunctiva-like cells appeared. CONCLUSION: The TE-HCEP, with similar morphology and structure to those of innate HCEP, could reconstruct a multilayer corneal epithelium with normal functions in restoring corneal transparency and thickness of LSCD rabbits after transplantation. It may be a promising HCEP equivalent for clinical therapy of corneal epithelial disorders.
基金This work was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA16030400 to W.L.)the National Key Research and Development Program(2016YFA0100202 and 2017YFA0104401 to T.H.,2018YFA0109701 to R.F.)+1 种基金the National Natural Science Foundation of China(31621004 to Q.Z.and W.L.,31571533 to H.W.,and 31701286 to G.F.)the Key Research Projects of the Frontier Science of the Chinese Academy of Sciences(QYZDY-SSWSMC002 to Q.Z.).
文摘Blastocyst complementation by pluripotent stem cell(PSC)injection is believed to be the most promising method to generate xenogeneic organs.However,ethical issues prevent the study of human chimeras in the late embryonic stage of development.Primate embryonic stem cells(ESCs),which have similar pluripotency to human ESCs,are a good model for studying interspecies chimerism and organ generation.However,whether primate ESCs can be used in xenogenous grafts remains unclear.In this study,we evaluated the chimeric ability of cynomolgus monkey(Macaca fascicularis)ESCs(cmESCs)in pigs,which are excellent hosts because of their many similarities to humans.We report an optimized culture medium that enhanced the anti-apoptotic ability of cmESCs and improved the development of chimeric embryos,in which domesticated cmESCs(D-ESCs)injected into pig blastocysts differentiated into cells of all three germ layers.In addition,we obtained two neonatal interspecies chimeras,in which we observed tissue-specific D-ESC differentiation.Taken together,the results demonstrate the capability of D-ESCs to integrate and differentiate into functional cells in a porcine model,with a chimeric ratio of 0.001-0.0001 in different neonate tissues.We believe this work will facilitate future developments in xenogeneic organogenesis,bringing us one step closer to producing tissue-specific functional cells and organs in a large animal model through interspecies blastocyst complementation.
文摘Tissue engineering has provided new treatment alternatives for tissue reconstruction. Advances in the tissue engineeringfield have resulted in mechanical support and biological substitutes to restore, maintain or improve tissue/organs structuresand functions. The application of tissue engineering technology in the vaginal reconstruction treatment can not onlyprovide mechanical requirements, but also offer tissue repairing as an alternative to traditional approaches. In this review, wediscuss recent advances in cell-based therapy in combination with scaffolds strategies that can potentially be adopted forgynaecological transplantation.