Mesenchymal stem cells can be replaced by exosomes for the treatment of inflammatory diseases,injury repair,degenerative diseases,and tumors.Exosomes are small vesicles rich in a variety of nucleic acids[including mes...Mesenchymal stem cells can be replaced by exosomes for the treatment of inflammatory diseases,injury repair,degenerative diseases,and tumors.Exosomes are small vesicles rich in a variety of nucleic acids[including messenger RNA,Long non-coding RNA,microRNA(miRNA),and circular RNA],proteins,and lipids.Exosomes can be secreted by most cells in the human body and are known to play a key role in the communication of information and material transport between cells.Like exosomes,miRNAs were neglected before their role in various activities of organisms was discovered.Several studies have confirmed that miRNAs play a vital role within exosomes.This review focuses on the specific role of miRNAs in MSC-derived exosomes(MSC-exosomes)and the methods commonly used by researchers to study miRNAs in exosomes.Taken together,miRNAs from MSC-exosomes display immense potential and practical value,both in basic medicine and future clinical applications,in treating several diseases.展开更多
Spinal cord injury (SCI) currently ranks second after mental retarda- tion among neurological disorders in terms of cost to society. Pain is a debilitating consequence of SCI related to the nature of the lesion, neu...Spinal cord injury (SCI) currently ranks second after mental retarda- tion among neurological disorders in terms of cost to society. Pain is a debilitating consequence of SCI related to the nature of the lesion, neurological structures damaged, and secondary pathophysiological changes of surviving tissues (Yezierski, 2005; D'Angelo et al., 2013).展开更多
Bone tissue engineering may be hindered by underlying osteoporosis because of a decreased osteogenic ability of autologous seed cells and an unfavorably changed microenvironment in these patients. Epigenetic regulatio...Bone tissue engineering may be hindered by underlying osteoporosis because of a decreased osteogenic ability of autologous seed cells and an unfavorably changed microenvironment in these patients. Epigenetic regulation plays an important role in the developmental origins of osteoporosis; however, few studies have investigated the potential of epigenetic therapy to improve or rescue the osteogenic ability of bone marrow mesenchymal stem cells(BMMSCs) under osteoporotic conditions. Here, we investigated pargyline, an inhibitor of lysine-specific demethylase 1(LSD1), which mainly catalyzes the demethylation of the di- and mono-methylation of H3K4. We demonstrated that 1.5 mmol·Lpargyline was the optimal concentration for the osteogenic differentiation of human BMMSCs. Pargyline rescued the osteogenic differentiation ability of mouse BMMSCs under osteoporotic conditions by enhancing the dimethylation level of H3K4 at the promoter regions of osteogenesis-related genes. Moreover, pargyline partially rescued or prevented the osteoporotic conditions in aged or ovariectomized mouse models, respectively. By introducing the concept of epigenetic therapy into the field of osteoporosis, this study demonstrated that LSD1 inhibitors could improve the clinical practice of MSC-based bone tissue engineering and proposes their novel use to treat osteoporosis.展开更多
文摘Mesenchymal stem cells can be replaced by exosomes for the treatment of inflammatory diseases,injury repair,degenerative diseases,and tumors.Exosomes are small vesicles rich in a variety of nucleic acids[including messenger RNA,Long non-coding RNA,microRNA(miRNA),and circular RNA],proteins,and lipids.Exosomes can be secreted by most cells in the human body and are known to play a key role in the communication of information and material transport between cells.Like exosomes,miRNAs were neglected before their role in various activities of organisms was discovered.Several studies have confirmed that miRNAs play a vital role within exosomes.This review focuses on the specific role of miRNAs in MSC-derived exosomes(MSC-exosomes)and the methods commonly used by researchers to study miRNAs in exosomes.Taken together,miRNAs from MSC-exosomes display immense potential and practical value,both in basic medicine and future clinical applications,in treating several diseases.
文摘Spinal cord injury (SCI) currently ranks second after mental retarda- tion among neurological disorders in terms of cost to society. Pain is a debilitating consequence of SCI related to the nature of the lesion, neurological structures damaged, and secondary pathophysiological changes of surviving tissues (Yezierski, 2005; D'Angelo et al., 2013).
基金supported by grants from the National Natural Science Foundation of China(81200763 to WG and 81070809 to YZ)the Program for New Century Excellent Talents(NCET)at the University from Ministry of Education of China(NCET-11-0026)+1 种基金the PKU School of Stomatology for Talented Young Investigators(PKUSS20150107)the Construction Program for the National Key Clinical Specialty from the National Health and Family Planning Commission of China(2011)
文摘Bone tissue engineering may be hindered by underlying osteoporosis because of a decreased osteogenic ability of autologous seed cells and an unfavorably changed microenvironment in these patients. Epigenetic regulation plays an important role in the developmental origins of osteoporosis; however, few studies have investigated the potential of epigenetic therapy to improve or rescue the osteogenic ability of bone marrow mesenchymal stem cells(BMMSCs) under osteoporotic conditions. Here, we investigated pargyline, an inhibitor of lysine-specific demethylase 1(LSD1), which mainly catalyzes the demethylation of the di- and mono-methylation of H3K4. We demonstrated that 1.5 mmol·Lpargyline was the optimal concentration for the osteogenic differentiation of human BMMSCs. Pargyline rescued the osteogenic differentiation ability of mouse BMMSCs under osteoporotic conditions by enhancing the dimethylation level of H3K4 at the promoter regions of osteogenesis-related genes. Moreover, pargyline partially rescued or prevented the osteoporotic conditions in aged or ovariectomized mouse models, respectively. By introducing the concept of epigenetic therapy into the field of osteoporosis, this study demonstrated that LSD1 inhibitors could improve the clinical practice of MSC-based bone tissue engineering and proposes their novel use to treat osteoporosis.