A grating lobes suppression method for chirp-subpulse stepped frequency(CSSF) signals is proposed, which is applied to deformation monitoring using the ground based synthetic aperture radar(GB-SAR) system. This me...A grating lobes suppression method for chirp-subpulse stepped frequency(CSSF) signals is proposed, which is applied to deformation monitoring using the ground based synthetic aperture radar(GB-SAR) system. This method is based on accurate estimation and correction of the phase and amplitude error along two dimensions(range and azimuth), i.e., the error estimation inside the subpulse(in-subpulse error) and across the stepped frequency subpulses(cross-subpulse error) of transmitted CSSF signals. Validated both with simulated data and experimental data recorded in the deformation monitoring campaign, it can be seen that the method as well as the relative conclusions can be fully and effectively applied to most of the stepped frequency systems.展开更多
Stepped frequency chirp signal obtains high-resolution radar images by synthesizing multiple narrowband chirp pulses.It has been one of the most commonly used wideband radar waveforms due to its lower demand for radar...Stepped frequency chirp signal obtains high-resolution radar images by synthesizing multiple narrowband chirp pulses.It has been one of the most commonly used wideband radar waveforms due to its lower demand for radar instant bandwidth.In this paper,we propose a radar jamming method using two-dimensional nonperiodic phase modulation against stepped frequency chirp signal imaging radar.Using the unique property of nonperiodic phase modulation,the proposed method can generate high-level sidelobes that perform as a special blanket jamming along both the range and azimuth directions and make the target unrecognizable.Then,the influence of different modulation parameters,such as the code width and duty ratio,are further discussed.Based on this,the corresponding parameter design principles are presented.Finally,the validity of the proposed method is demonstrated by the Yake-42 plane data simulation and measured unmanned aerial vehicle data experiment.展开更多
三维成像对空间目标测量、分类、识别等具有重要的意义。线性调频步进信号具有瞬时带宽较窄的特点,可获得较远的探测距离,在空间目标监视中具有优势。基于线性调频步进信号模型,提出了一种空间自旋目标时变三维成像的方法,并对由此产生...三维成像对空间目标测量、分类、识别等具有重要的意义。线性调频步进信号具有瞬时带宽较窄的特点,可获得较远的探测距离,在空间目标监视中具有优势。基于线性调频步进信号模型,提出了一种空间自旋目标时变三维成像的方法,并对由此产生的距离走动等问题进行了详细讨论。通过采用L型三天线雷达,首先分别获得各天线回波对应的高分辨距离像(high resolution range profile,HRRP)序列,然后利用Hough变换提取高分辨距离像序列中各个目标散射点的自旋运动特征,以获得各个散射点的自旋"轨迹",最后通过对不同干涉平面内的高分辨距离像序列进行干涉处理,获得各散射点在每一慢时间时刻的空间方位向和俯仰向位置,结合高分辨距离像序列获得的距离向信息即可准确重构散射点的时变空间三维位置。仿真实验验证了文中自旋目标时变三维成像方法的有效性。展开更多
基金supported by the National Natural Science Foundation of China(6112010600461225005)
文摘A grating lobes suppression method for chirp-subpulse stepped frequency(CSSF) signals is proposed, which is applied to deformation monitoring using the ground based synthetic aperture radar(GB-SAR) system. This method is based on accurate estimation and correction of the phase and amplitude error along two dimensions(range and azimuth), i.e., the error estimation inside the subpulse(in-subpulse error) and across the stepped frequency subpulses(cross-subpulse error) of transmitted CSSF signals. Validated both with simulated data and experimental data recorded in the deformation monitoring campaign, it can be seen that the method as well as the relative conclusions can be fully and effectively applied to most of the stepped frequency systems.
基金Project supported by the Natural Science Foundation of Hunan Province,China(No.2022JJ40561)the Scientific Research Program of National University of Defense Technology,China(No.ZK22-46)the National Natural Science Foundation of China(Nos.61890542,62001481,and 62071475)。
文摘Stepped frequency chirp signal obtains high-resolution radar images by synthesizing multiple narrowband chirp pulses.It has been one of the most commonly used wideband radar waveforms due to its lower demand for radar instant bandwidth.In this paper,we propose a radar jamming method using two-dimensional nonperiodic phase modulation against stepped frequency chirp signal imaging radar.Using the unique property of nonperiodic phase modulation,the proposed method can generate high-level sidelobes that perform as a special blanket jamming along both the range and azimuth directions and make the target unrecognizable.Then,the influence of different modulation parameters,such as the code width and duty ratio,are further discussed.Based on this,the corresponding parameter design principles are presented.Finally,the validity of the proposed method is demonstrated by the Yake-42 plane data simulation and measured unmanned aerial vehicle data experiment.
文摘三维成像对空间目标测量、分类、识别等具有重要的意义。线性调频步进信号具有瞬时带宽较窄的特点,可获得较远的探测距离,在空间目标监视中具有优势。基于线性调频步进信号模型,提出了一种空间自旋目标时变三维成像的方法,并对由此产生的距离走动等问题进行了详细讨论。通过采用L型三天线雷达,首先分别获得各天线回波对应的高分辨距离像(high resolution range profile,HRRP)序列,然后利用Hough变换提取高分辨距离像序列中各个目标散射点的自旋运动特征,以获得各个散射点的自旋"轨迹",最后通过对不同干涉平面内的高分辨距离像序列进行干涉处理,获得各散射点在每一慢时间时刻的空间方位向和俯仰向位置,结合高分辨距离像序列获得的距离向信息即可准确重构散射点的时变空间三维位置。仿真实验验证了文中自旋目标时变三维成像方法的有效性。