BACKGROUND Although en bloc dissection of hepatic hilum lymph nodes has many advantages in radical tumor treatment,the feasibility and safety of this approach for laparo-scopic pancreaticoduodenectomy(LPD)require furt...BACKGROUND Although en bloc dissection of hepatic hilum lymph nodes has many advantages in radical tumor treatment,the feasibility and safety of this approach for laparo-scopic pancreaticoduodenectomy(LPD)require further clinical evaluation and investigation.AIM To explore the application value of the"five steps four quadrants"modularized en bloc dissection technique for accessing hepatic hilum lymph nodes in LPD patients.METHODS A total of 52 patients who underwent LPD via the"five steps four quadrants"modularized en bloc dissection technique for hepatic hilum lymph nodes from April 2021 to July 2023 in our department were analyzed retrospectively.The patients'body mass index(BMI),preoperative laboratory indices,intraoperative variables and postoperative complications were recorded.The relationships between preoperative data and intraoperative lymph node dissection time and blood loss were also analyzed.RESULTS Among the 52 patients,36 were males and 16 were females,and the average age was 62.2±11.0 years.There were 26 patients with pancreatic head cancer,16 patients with periampullary cancer,and 10 patients with distal bile duct cancer.The BMI was 22.3±3.3 kg/m²,and the median total bilirubin(TBIL)concentration was 57.7(16.0-155.7)µmol/L.All patients successfully underwent the"five steps four quadrants"modularized en bloc dissection technique without lymph node clearance-related complications such as postoperative bleeding or lymphatic leakage.Correlation analysis revealed significant associations between preoperative BMI(r=0.3581,P=0.0091),TBIL level(r=0.2988,P=0.0341),prothrombin time(r=0.3018,P=0.0297)and lymph node dissection time.Moreover,dissection time was significantly correlated with intraoperative blood loss(r=0.7744,P<0.0001).Further stratified analysis demonstrated that patients with a preoperative BMI≥21.9 kg/m²and a TIBL concentration≥57.7μmol/L had significantly longer lymph node dissection times(both P<0.05).CONCLUSION The"five steps four quadrants"modularized en bloc dissection technique for accessing the hepatic hilum lymph node is safe and feasible for LPD.This technique is expected to improve the efficiency of hepatic hilum lymph node dissection and shorten the learning curve;thus,it is worthy of further clinical promotion and application.展开更多
We construct a one-dimensional quasiperiodic quantum walk to investigate the localization–delocalization transition.The inverse participation ratio and Lyapunov exponent are employed as two indexes to determine the m...We construct a one-dimensional quasiperiodic quantum walk to investigate the localization–delocalization transition.The inverse participation ratio and Lyapunov exponent are employed as two indexes to determine the mobility edge, a critical energy to distinguish the energy regions of extended and localized states. The analytical solution of mobility edge is obtained by the Lyapunov exponents in global theory, and the consistency of the two indexes is confirmed. We further study the dynamic characteristics of the quantum walk and show that the probabilities are localized to some specific lattice sites with time evolution. This phenomenon is explained by the effective potential of the Hamiltonian which corresponds to the phase in the coin operator of the quantum walk.展开更多
Hierarchical networks are frequently encountered in animal groups,gene networks,and artificial engineering systems such as multiple robots,unmanned vehicle systems,smart grids,wind farm networks,and so forth.The struc...Hierarchical networks are frequently encountered in animal groups,gene networks,and artificial engineering systems such as multiple robots,unmanned vehicle systems,smart grids,wind farm networks,and so forth.The structure of a large directed hierarchical network is often strongly influenced by reverse edges from lower-to higher-level nodes,such as lagging birds’howl in a flock or the opinions of lowerlevel individuals feeding back to higher-level ones in a social group.This study reveals that,for most large-scale real hierarchical networks,the majority of the reverse edges do not affect the synchronization process of the entire network;the synchronization process is influenced only by a small part of these reverse edges along specific paths.More surprisingly,a single effective reverse edge can slow down the synchronization of a huge hierarchical network by over 60%.The effect of such edges depends not on the network size but only on the average in-degree of the involved subnetwork.The overwhelming majority of active reverse edges turn out to have some kind of“bunching”effect on the information flows of hierarchical networks,which slows down synchronization processes.This finding refines the current understanding of the role of reverse edges in many natural,social,and engineering hierarchical networks,which might be beneficial for precisely tuning the synchronization rhythms of these networks.Our study also proposes an effective way to attack a hierarchical network by adding a malicious reverse edge to it and provides some guidance for protecting a network by screening out the specific small proportion of vulnerable nodes.展开更多
Half-integer microwave induced steps(Shapiro steps)have been observed in many different Josephson junction systems,which have attracted a lot of attention because they signify the deviation of current phase relation(C...Half-integer microwave induced steps(Shapiro steps)have been observed in many different Josephson junction systems,which have attracted a lot of attention because they signify the deviation of current phase relation(CPR)and uncover many unconventional physical properties.In this article,we first report the discovery of half-integer Shapiro steps in MgB_(2)focused He ion beam(He-FIB)Josephson junctions.The half-integer steps'dependence on microwave frequency,temperature,microwave power,and magnetic field is also analyzed.We find that the existence of half-integer steps can be controlled by the magnetic field periodically,which is similar to that of high temperature superconductor(HTS)grain boundary junctions,and the similarity of the microstructures between gain boundary junctions and He-FIB junctions is discussed.As a consequence,we mainly attribute the physical origin of half-integer steps in MgB_(2)He-FIB junctions to the model that a He-FIB junction is analogous to a parallel junctions'array.Our results show that He-FIB technology is a promising platform for researching CPR in junctions made of different superconductors.展开更多
240 nm AlGaN-based micro-LEDs with different sizes are designed and fabricated.Then,the external quantum efficiency(EQE)and light extraction efficiency(LEE)are systematically investigated by comparing size and edge ef...240 nm AlGaN-based micro-LEDs with different sizes are designed and fabricated.Then,the external quantum efficiency(EQE)and light extraction efficiency(LEE)are systematically investigated by comparing size and edge effects.Here,it is revealed that the peak optical output power increases by 81.83%with the size shrinking from 50.0 to 25.0μm.Thereinto,the LEE increases by 26.21%and the LEE enhancement mainly comes from the sidewall light extraction.Most notably,transversemagnetic(TM)mode light intensifies faster as the size shrinks due to the tilted mesa side-wall and Al reflector design.However,when it turns to 12.5μm sized micro-LEDs,the output power is lower than 25.0μm sized ones.The underlying mechanism is that even though protected by SiO2 passivation,the edge effect which leads to current leakage and Shockley-Read-Hall(SRH)recombination deteriorates rapidly with the size further shrinking.Moreover,the ratio of the p-contact area to mesa area is much lower,which deteriorates the p-type current spreading at the mesa edge.These findings show a role of thumb for the design of high efficiency micro-LEDs with wavelength below 250 nm,which will pave the way for wide applications of deep ultraviolet(DUV)micro-LEDs.展开更多
By pushing computation,cache,and network control to the edge,mobile edge computing(MEC)is expected to play a leading role in fifth generation(5G)and future sixth generation(6G).Nevertheless,facing ubiquitous fast-grow...By pushing computation,cache,and network control to the edge,mobile edge computing(MEC)is expected to play a leading role in fifth generation(5G)and future sixth generation(6G).Nevertheless,facing ubiquitous fast-growing computational demands,it is impossible for a single MEC paradigm to effectively support high-quality intelligent services at end user equipments(UEs).To address this issue,we propose an air-ground collaborative MEC(AGCMEC)architecture in this article.The proposed AGCMEC integrates all potentially available MEC servers within air and ground in the envisioned 6G,by a variety of collaborative ways to provide computation services at their best for UEs.Firstly,we introduce the AGC-MEC architecture and elaborate three typical use cases.Then,we discuss four main challenges in the AGC-MEC as well as their potential solutions.Next,we conduct a case study of collaborative service placement for AGC-MEC to validate the effectiveness of the proposed collaborative service placement strategy.Finally,we highlight several potential research directions of the AGC-MEC.展开更多
We study the cross-stitch flatband lattice subject to the quasiperiodic complex potential exp(ix). We firstly identify the exact expression of quadratic mobility edges through analytical calculation, then verify the t...We study the cross-stitch flatband lattice subject to the quasiperiodic complex potential exp(ix). We firstly identify the exact expression of quadratic mobility edges through analytical calculation, then verify the theoretical predictions by numerically calculating the inverse participation ratio. Further more, we study the relationship between the real–complex spectrum transition and the localization–delocalization transition, and demonstrate that mobility edges in this non-Hermitian model not only separate localized from extended states but also indicate the coexistence of complex and real spectrum.展开更多
The increasing popularity of the metaverse has led to a growing interest and market size in spatial computing from both academia and industry.Developing portable and accurate imaging and depth sensing systems is cruci...The increasing popularity of the metaverse has led to a growing interest and market size in spatial computing from both academia and industry.Developing portable and accurate imaging and depth sensing systems is crucial for advancing next-generation virtual reality devices.This work demonstrates an intelligent,lightweight,and compact edge-enhanced depth perception system that utilizes a binocular meta-lens for spatial computing.The miniaturized system comprises a binocular meta-lens,a 532 nm filter,and a CMOS sensor.For disparity computation,we propose a stereo-matching neural network with a novel H-Module.The H-Module incorporates an attention mechanism into the Siamese network.The symmetric architecture,with cross-pixel interaction and cross-view interaction,enables a more comprehensive analysis of contextual information in stereo images.Based on spatial intensity discontinuity,the edge enhancement eliminates illposed regions in the image where ambiguous depth predictions may occur due to a lack of texture.With the assistance of deep learning,our edge-enhanced system provides prompt responses in less than 0.15 seconds.This edge-enhanced depth perception meta-lens imaging system will significantly contribute to accurate 3D scene modeling,machine vision,autonomous driving,and robotics development.展开更多
Background:Shifts in forest phenological events serve as strong indicators of climate change.However,the sensitivity of phenology events to climate change in relation to forest origins has received limited attention.M...Background:Shifts in forest phenological events serve as strong indicators of climate change.However,the sensitivity of phenology events to climate change in relation to forest origins has received limited attention.Moreover,it is unknown whether forest phenology changes with the proximity to forest edge.Methods:This study examined the green-up dates,dormancy dates,time-integrated NDVI(LiNDVI,a measure of vegetation productivity in growing season),and their sensitivities to climatic factors along the gradients of distance(i.e.proximity)to forest edge(0–2 km)in China's natural forests(NF)and planted forests(PF).For the analysis,field-surveyed data were integrated with Moderate Resolution Imaging Spectroradiometer(MODIS)NDVI from 2000 to 2022.Results:Our results reveal that PF had earlier green-up dates,later dormancy dates,and higher LiNDVI than NF.However,green-up sensitivities to temperature were higher at the edges of NF,whereas no such pattern was observed in PF.Conversely,the sensitivity of dormancy dates remains relatively stable from the inner to the edge of both NF and PF,except for a quadratic change in dormancy date sensitivity to precipitation found in NF.Additionally,we found that the green-up sensitivity to temperature increased with decreasing proximity to edge in NF evergreen forests,while it showed the opposite trend in PF evergreen forests.Furthermore,we observed that the precipitation impact on green-up dates shifts from postponing to advancing from the inner to the edge of NF,whereas precipitation dominantly postpones PF's green-up dates regardless of the proximity to edge.The LiNDVI exhibits higher sensitivity to precipitation at the edge areas,a phenomenon observed in NF but not in PF.Conclusions:These results suggest that the responses of forests to climate change vary with the distance to the edge.With increasing edge forests,which results from fragmentation caused by global changes,we anticipate that desynchronized phenological events along the distance to the edge could alter biogeochemical cycles and reshape ecosystem services such as energy flows,pollination duration,and the tourism industry.Therefore,we advocate for further investigations of edge effects to improve ecosystem modelling,enhance forest stability,and promote sustainable tourism.展开更多
We establish a general mapping from one-dimensional non-Hermitian mosaic models to their non-mosaic counterparts.This mapping can give rise to mobility edges and even Lyapunov exponents in the mosaic models if critica...We establish a general mapping from one-dimensional non-Hermitian mosaic models to their non-mosaic counterparts.This mapping can give rise to mobility edges and even Lyapunov exponents in the mosaic models if critical points of localization or Lyapunov exponents of localized states in the corresponding non-mosaic models have already been analytically solved.To demonstrate the validity of this mapping,we apply it to two non-Hermitian localization models:an Aubry-Andre-like model with nonreciprocal hopping and complex quasiperiodic potentials,and the Ganeshan-Pixley-Das Sarma model with nonreciprocal hopping.We successfully obtain the mobility edges and Lyapunov exponents in their mosaic models.This general mapping may catalyze further studies on mobility edges,Lyapunov exponents,and other significant quantities pertaining to localization in non-Hermitian mosaic models.展开更多
We study the one-dimensional tight-binding model with quasi-periodic disorders,where the quasi-period is tuned to be large compared to the system size.It is found that this type of model with large quasi-periodic diso...We study the one-dimensional tight-binding model with quasi-periodic disorders,where the quasi-period is tuned to be large compared to the system size.It is found that this type of model with large quasi-periodic disorders can also support the mobility edges,which is very similar to the models with slowly varying quasi-periodic disorders.The energy-matching method is employed to determine the locations of mobility edges in both types of models.These results of mobility edges are verified by numerical calculations in various examples.We also provide qualitative arguments to support the fact that large quasi-periodic disorders will lead to the existence of mobility edges.展开更多
急诊科具有危重患者多,突发状况多,医疗风险高等特点,目前国内大多数医院急诊科护士以团队形式开展工作,但临床工作中易出现职责分工不明确、配合不协调、组织抢救混乱等问题^([1])。团队培训是增强团队优质高效协作的重要途径^([2]),...急诊科具有危重患者多,突发状况多,医疗风险高等特点,目前国内大多数医院急诊科护士以团队形式开展工作,但临床工作中易出现职责分工不明确、配合不协调、组织抢救混乱等问题^([1])。团队培训是增强团队优质高效协作的重要途径^([2]),为进一步提升急诊护理团队协作,保障患者安全,本次研究将前期基于提高医疗质量和患者安全的团队策略与工具(team strategies and tools to enhance performance and patient safety,TeamSTEPPS)理论构建的急诊护理团队培训方案^([3])进行临床应用,取得了较好的效果。现报道如下。展开更多
Security issues in cloud networks and edge computing have become very common. This research focuses on analyzing such issues and developing the best solutions. A detailed literature review has been conducted in this r...Security issues in cloud networks and edge computing have become very common. This research focuses on analyzing such issues and developing the best solutions. A detailed literature review has been conducted in this regard. The findings have shown that many challenges are linked to edge computing, such as privacy concerns, security breaches, high costs, low efficiency, etc. Therefore, there is a need to implement proper security measures to overcome these issues. Using emerging trends, like machine learning, encryption, artificial intelligence, real-time monitoring, etc., can help mitigate security issues. They can also develop a secure and safe future in cloud computing. It was concluded that the security implications of edge computing can easily be covered with the help of new technologies and techniques.展开更多
In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of ...In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of UAV,the transmitting beamforming of users,and the phase shift matrix of IRS.The original problem is strong non-convex and difficult to solve.We first propose two basic modes of the proactive eavesdropper,and obtain the closed-form solution for the boundary conditions of the two modes.Then we transform the original problem into an equivalent one and propose an alternating optimization(AO)based method to obtain a local optimal solution.The convergence of the algorithm is illustrated by numerical results.Further,we propose a zero forcing(ZF)based method as sub-optimal solution,and the simulation section shows that the proposed two schemes could obtain better performance compared with traditional schemes.展开更多
Few-layer graphene grown on Ni thin films has been studied by scanning tunneling microscopy. In most areas on the surfaces, moir6 patterns resulted from rotational stacking faults were observed. At a bias lower than 2...Few-layer graphene grown on Ni thin films has been studied by scanning tunneling microscopy. In most areas on the surfaces, moir6 patterns resulted from rotational stacking faults were observed. At a bias lower than 200 mV, only one sublattice shows up in regions without moir6 patterns while both sublattices are seen in regions with moir6 pattens. This phenomenon can be used to identify AB stacked regions. The scattering characteristics at various types of step edges are different from those of monolayer graphene edges, either armchair or zigzag.展开更多
Edge technology aims to bring cloud resources(specifically,the computation,storage,and network)to the closed proximity of the edge devices,i.e.,smart devices where the data are produced and consumed.Embedding computin...Edge technology aims to bring cloud resources(specifically,the computation,storage,and network)to the closed proximity of the edge devices,i.e.,smart devices where the data are produced and consumed.Embedding computing and application in edge devices lead to emerging of two new concepts in edge technology:edge computing and edge analytics.Edge analytics uses some techniques or algorithms to analyse the data generated by the edge devices.With the emerging of edge analytics,the edge devices have become a complete set.Currently,edge analytics is unable to provide full support to the analytic techniques.The edge devices cannot execute advanced and sophisticated analytic algorithms following various constraints such as limited power supply,small memory size,limited resources,etc.This article aims to provide a detailed discussion on edge analytics.The key contributions of the paper are as follows-a clear explanation to distinguish between the three concepts of edge technology:edge devices,edge computing,and edge analytics,along with their issues.In addition,the article discusses the implementation of edge analytics to solve many problems and applications in various areas such as retail,agriculture,industry,and healthcare.Moreover,the research papers of the state-of-the-art edge analytics are rigorously reviewed in this article to explore the existing issues,emerging challenges,research opportunities and their directions,and applications.展开更多
基金Supported by Health Research Program of Anhui,No.AHWJ2022b032。
文摘BACKGROUND Although en bloc dissection of hepatic hilum lymph nodes has many advantages in radical tumor treatment,the feasibility and safety of this approach for laparo-scopic pancreaticoduodenectomy(LPD)require further clinical evaluation and investigation.AIM To explore the application value of the"five steps four quadrants"modularized en bloc dissection technique for accessing hepatic hilum lymph nodes in LPD patients.METHODS A total of 52 patients who underwent LPD via the"five steps four quadrants"modularized en bloc dissection technique for hepatic hilum lymph nodes from April 2021 to July 2023 in our department were analyzed retrospectively.The patients'body mass index(BMI),preoperative laboratory indices,intraoperative variables and postoperative complications were recorded.The relationships between preoperative data and intraoperative lymph node dissection time and blood loss were also analyzed.RESULTS Among the 52 patients,36 were males and 16 were females,and the average age was 62.2±11.0 years.There were 26 patients with pancreatic head cancer,16 patients with periampullary cancer,and 10 patients with distal bile duct cancer.The BMI was 22.3±3.3 kg/m²,and the median total bilirubin(TBIL)concentration was 57.7(16.0-155.7)µmol/L.All patients successfully underwent the"five steps four quadrants"modularized en bloc dissection technique without lymph node clearance-related complications such as postoperative bleeding or lymphatic leakage.Correlation analysis revealed significant associations between preoperative BMI(r=0.3581,P=0.0091),TBIL level(r=0.2988,P=0.0341),prothrombin time(r=0.3018,P=0.0297)and lymph node dissection time.Moreover,dissection time was significantly correlated with intraoperative blood loss(r=0.7744,P<0.0001).Further stratified analysis demonstrated that patients with a preoperative BMI≥21.9 kg/m²and a TIBL concentration≥57.7μmol/L had significantly longer lymph node dissection times(both P<0.05).CONCLUSION The"five steps four quadrants"modularized en bloc dissection technique for accessing the hepatic hilum lymph node is safe and feasible for LPD.This technique is expected to improve the efficiency of hepatic hilum lymph node dissection and shorten the learning curve;thus,it is worthy of further clinical promotion and application.
文摘We construct a one-dimensional quasiperiodic quantum walk to investigate the localization–delocalization transition.The inverse participation ratio and Lyapunov exponent are employed as two indexes to determine the mobility edge, a critical energy to distinguish the energy regions of extended and localized states. The analytical solution of mobility edge is obtained by the Lyapunov exponents in global theory, and the consistency of the two indexes is confirmed. We further study the dynamic characteristics of the quantum walk and show that the probabilities are localized to some specific lattice sites with time evolution. This phenomenon is explained by the effective potential of the Hamiltonian which corresponds to the phase in the coin operator of the quantum walk.
基金supported in part by the National Natural Science Foundation of China(62225306,U2141235,52188102,and 62003145)the National Key Research and Development Program of China(2022ZD0119601)+1 种基金Guangdong Basic and Applied Research Foundation(2022B1515120069)the Science and Technology Project of State Grid Corporation of China(5100-202199557A-0-5-ZN).
文摘Hierarchical networks are frequently encountered in animal groups,gene networks,and artificial engineering systems such as multiple robots,unmanned vehicle systems,smart grids,wind farm networks,and so forth.The structure of a large directed hierarchical network is often strongly influenced by reverse edges from lower-to higher-level nodes,such as lagging birds’howl in a flock or the opinions of lowerlevel individuals feeding back to higher-level ones in a social group.This study reveals that,for most large-scale real hierarchical networks,the majority of the reverse edges do not affect the synchronization process of the entire network;the synchronization process is influenced only by a small part of these reverse edges along specific paths.More surprisingly,a single effective reverse edge can slow down the synchronization of a huge hierarchical network by over 60%.The effect of such edges depends not on the network size but only on the average in-degree of the involved subnetwork.The overwhelming majority of active reverse edges turn out to have some kind of“bunching”effect on the information flows of hierarchical networks,which slows down synchronization processes.This finding refines the current understanding of the role of reverse edges in many natural,social,and engineering hierarchical networks,which might be beneficial for precisely tuning the synchronization rhythms of these networks.Our study also proposes an effective way to attack a hierarchical network by adding a malicious reverse edge to it and provides some guidance for protecting a network by screening out the specific small proportion of vulnerable nodes.
基金supported by the National Natural Science Foundation of China (Grant No.12104016)the National Key Research and Development Program of China (Grant No.2020YFF01014706)。
文摘Half-integer microwave induced steps(Shapiro steps)have been observed in many different Josephson junction systems,which have attracted a lot of attention because they signify the deviation of current phase relation(CPR)and uncover many unconventional physical properties.In this article,we first report the discovery of half-integer Shapiro steps in MgB_(2)focused He ion beam(He-FIB)Josephson junctions.The half-integer steps'dependence on microwave frequency,temperature,microwave power,and magnetic field is also analyzed.We find that the existence of half-integer steps can be controlled by the magnetic field periodically,which is similar to that of high temperature superconductor(HTS)grain boundary junctions,and the similarity of the microstructures between gain boundary junctions and He-FIB junctions is discussed.As a consequence,we mainly attribute the physical origin of half-integer steps in MgB_(2)He-FIB junctions to the model that a He-FIB junction is analogous to a parallel junctions'array.Our results show that He-FIB technology is a promising platform for researching CPR in junctions made of different superconductors.
基金This work was supported by National Key R&D Program of China(2022YFB3605103)the National Natural Science Foundation of China(62204241,U22A2084,62121005,and 61827813)+3 种基金the Natural Science Foundation of Jilin Province(20230101345JC,20230101360JC,and 20230101107JC)the Youth Innovation Promotion Association of CAS(2023223)the Young Elite Scientist Sponsorship Program By CAST(YESS20200182)the CAS Talents Program(E30122E4M0).
文摘240 nm AlGaN-based micro-LEDs with different sizes are designed and fabricated.Then,the external quantum efficiency(EQE)and light extraction efficiency(LEE)are systematically investigated by comparing size and edge effects.Here,it is revealed that the peak optical output power increases by 81.83%with the size shrinking from 50.0 to 25.0μm.Thereinto,the LEE increases by 26.21%and the LEE enhancement mainly comes from the sidewall light extraction.Most notably,transversemagnetic(TM)mode light intensifies faster as the size shrinks due to the tilted mesa side-wall and Al reflector design.However,when it turns to 12.5μm sized micro-LEDs,the output power is lower than 25.0μm sized ones.The underlying mechanism is that even though protected by SiO2 passivation,the edge effect which leads to current leakage and Shockley-Read-Hall(SRH)recombination deteriorates rapidly with the size further shrinking.Moreover,the ratio of the p-contact area to mesa area is much lower,which deteriorates the p-type current spreading at the mesa edge.These findings show a role of thumb for the design of high efficiency micro-LEDs with wavelength below 250 nm,which will pave the way for wide applications of deep ultraviolet(DUV)micro-LEDs.
基金supported in part by the National Natural Science Foundation of China under Grant 62171465,62072303,62272223,U22A2031。
文摘By pushing computation,cache,and network control to the edge,mobile edge computing(MEC)is expected to play a leading role in fifth generation(5G)and future sixth generation(6G).Nevertheless,facing ubiquitous fast-growing computational demands,it is impossible for a single MEC paradigm to effectively support high-quality intelligent services at end user equipments(UEs).To address this issue,we propose an air-ground collaborative MEC(AGCMEC)architecture in this article.The proposed AGCMEC integrates all potentially available MEC servers within air and ground in the envisioned 6G,by a variety of collaborative ways to provide computation services at their best for UEs.Firstly,we introduce the AGC-MEC architecture and elaborate three typical use cases.Then,we discuss four main challenges in the AGC-MEC as well as their potential solutions.Next,we conduct a case study of collaborative service placement for AGC-MEC to validate the effectiveness of the proposed collaborative service placement strategy.Finally,we highlight several potential research directions of the AGC-MEC.
基金supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20200737)NUPTSF (Grant Nos. NY220090 and NY220208)+2 种基金the National Natural Science Foundation of China (Grant No. 12074064)the Innovation Research Project of Jiangsu Province, China (Grant No. JSSCBS20210521)China Postdoctoral Science Foundation (Grant No. 2022M721693)。
文摘We study the cross-stitch flatband lattice subject to the quasiperiodic complex potential exp(ix). We firstly identify the exact expression of quadratic mobility edges through analytical calculation, then verify the theoretical predictions by numerically calculating the inverse participation ratio. Further more, we study the relationship between the real–complex spectrum transition and the localization–delocalization transition, and demonstrate that mobility edges in this non-Hermitian model not only separate localized from extended states but also indicate the coexistence of complex and real spectrum.
基金supports from the Research Grants Council of the Hong Kong Special Administrative Region,China[Project No.C5031-22GCityU11310522+3 种基金CityU11300123]the Department of Science and Technology of Guangdong Province[Project No.2020B1515120073]City University of Hong Kong[Project No.9610628]JST CREST(Grant No.JPMJCR1904).
文摘The increasing popularity of the metaverse has led to a growing interest and market size in spatial computing from both academia and industry.Developing portable and accurate imaging and depth sensing systems is crucial for advancing next-generation virtual reality devices.This work demonstrates an intelligent,lightweight,and compact edge-enhanced depth perception system that utilizes a binocular meta-lens for spatial computing.The miniaturized system comprises a binocular meta-lens,a 532 nm filter,and a CMOS sensor.For disparity computation,we propose a stereo-matching neural network with a novel H-Module.The H-Module incorporates an attention mechanism into the Siamese network.The symmetric architecture,with cross-pixel interaction and cross-view interaction,enables a more comprehensive analysis of contextual information in stereo images.Based on spatial intensity discontinuity,the edge enhancement eliminates illposed regions in the image where ambiguous depth predictions may occur due to a lack of texture.With the assistance of deep learning,our edge-enhanced system provides prompt responses in less than 0.15 seconds.This edge-enhanced depth perception meta-lens imaging system will significantly contribute to accurate 3D scene modeling,machine vision,autonomous driving,and robotics development.
基金supported by National Science Foundation of China(Nos.32001166,32371663)the Forestry Peak Discipline Construction Project of Fujian Agriculture and Forestry University,China(No.72202200205).
文摘Background:Shifts in forest phenological events serve as strong indicators of climate change.However,the sensitivity of phenology events to climate change in relation to forest origins has received limited attention.Moreover,it is unknown whether forest phenology changes with the proximity to forest edge.Methods:This study examined the green-up dates,dormancy dates,time-integrated NDVI(LiNDVI,a measure of vegetation productivity in growing season),and their sensitivities to climatic factors along the gradients of distance(i.e.proximity)to forest edge(0–2 km)in China's natural forests(NF)and planted forests(PF).For the analysis,field-surveyed data were integrated with Moderate Resolution Imaging Spectroradiometer(MODIS)NDVI from 2000 to 2022.Results:Our results reveal that PF had earlier green-up dates,later dormancy dates,and higher LiNDVI than NF.However,green-up sensitivities to temperature were higher at the edges of NF,whereas no such pattern was observed in PF.Conversely,the sensitivity of dormancy dates remains relatively stable from the inner to the edge of both NF and PF,except for a quadratic change in dormancy date sensitivity to precipitation found in NF.Additionally,we found that the green-up sensitivity to temperature increased with decreasing proximity to edge in NF evergreen forests,while it showed the opposite trend in PF evergreen forests.Furthermore,we observed that the precipitation impact on green-up dates shifts from postponing to advancing from the inner to the edge of NF,whereas precipitation dominantly postpones PF's green-up dates regardless of the proximity to edge.The LiNDVI exhibits higher sensitivity to precipitation at the edge areas,a phenomenon observed in NF but not in PF.Conclusions:These results suggest that the responses of forests to climate change vary with the distance to the edge.With increasing edge forests,which results from fragmentation caused by global changes,we anticipate that desynchronized phenological events along the distance to the edge could alter biogeochemical cycles and reshape ecosystem services such as energy flows,pollination duration,and the tourism industry.Therefore,we advocate for further investigations of edge effects to improve ecosystem modelling,enhance forest stability,and promote sustainable tourism.
基金the National Natural Science Foundation of China(Grant No.12204406)the National Key Research and Development Program of China(Grant No.2022YFA1405304)the Guangdong Provincial Key Laboratory(Grant No.2020B1212060066)。
文摘We establish a general mapping from one-dimensional non-Hermitian mosaic models to their non-mosaic counterparts.This mapping can give rise to mobility edges and even Lyapunov exponents in the mosaic models if critical points of localization or Lyapunov exponents of localized states in the corresponding non-mosaic models have already been analytically solved.To demonstrate the validity of this mapping,we apply it to two non-Hermitian localization models:an Aubry-Andre-like model with nonreciprocal hopping and complex quasiperiodic potentials,and the Ganeshan-Pixley-Das Sarma model with nonreciprocal hopping.We successfully obtain the mobility edges and Lyapunov exponents in their mosaic models.This general mapping may catalyze further studies on mobility edges,Lyapunov exponents,and other significant quantities pertaining to localization in non-Hermitian mosaic models.
基金Project supported by the National Natural Science Foundation of China (Grant No.11874272)Science Specialty Program of Sichuan University (Grant No.2020SCUNL210)。
文摘We study the one-dimensional tight-binding model with quasi-periodic disorders,where the quasi-period is tuned to be large compared to the system size.It is found that this type of model with large quasi-periodic disorders can also support the mobility edges,which is very similar to the models with slowly varying quasi-periodic disorders.The energy-matching method is employed to determine the locations of mobility edges in both types of models.These results of mobility edges are verified by numerical calculations in various examples.We also provide qualitative arguments to support the fact that large quasi-periodic disorders will lead to the existence of mobility edges.
文摘急诊科具有危重患者多,突发状况多,医疗风险高等特点,目前国内大多数医院急诊科护士以团队形式开展工作,但临床工作中易出现职责分工不明确、配合不协调、组织抢救混乱等问题^([1])。团队培训是增强团队优质高效协作的重要途径^([2]),为进一步提升急诊护理团队协作,保障患者安全,本次研究将前期基于提高医疗质量和患者安全的团队策略与工具(team strategies and tools to enhance performance and patient safety,TeamSTEPPS)理论构建的急诊护理团队培训方案^([3])进行临床应用,取得了较好的效果。现报道如下。
文摘Security issues in cloud networks and edge computing have become very common. This research focuses on analyzing such issues and developing the best solutions. A detailed literature review has been conducted in this regard. The findings have shown that many challenges are linked to edge computing, such as privacy concerns, security breaches, high costs, low efficiency, etc. Therefore, there is a need to implement proper security measures to overcome these issues. Using emerging trends, like machine learning, encryption, artificial intelligence, real-time monitoring, etc., can help mitigate security issues. They can also develop a secure and safe future in cloud computing. It was concluded that the security implications of edge computing can easily be covered with the help of new technologies and techniques.
基金This work was supported by the Key Scientific and Technological Project of Henan Province(Grant Number 222102210212)Doctoral Research Start Project of Henan Institute of Technology(Grant Number KQ2005)Key Research Projects of Colleges and Universities in Henan Province(Grant Number 23B510006).
文摘In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of UAV,the transmitting beamforming of users,and the phase shift matrix of IRS.The original problem is strong non-convex and difficult to solve.We first propose two basic modes of the proactive eavesdropper,and obtain the closed-form solution for the boundary conditions of the two modes.Then we transform the original problem into an equivalent one and propose an alternating optimization(AO)based method to obtain a local optimal solution.The convergence of the algorithm is illustrated by numerical results.Further,we propose a zero forcing(ZF)based method as sub-optimal solution,and the simulation section shows that the proposed two schemes could obtain better performance compared with traditional schemes.
基金supported by the National Basic Research Program of China(Grant No.2012CB921300)the National Natural Science Foundation of China(Grant Nos.11074005 and 91021007)the Chinese Ministry of Education
文摘Few-layer graphene grown on Ni thin films has been studied by scanning tunneling microscopy. In most areas on the surfaces, moir6 patterns resulted from rotational stacking faults were observed. At a bias lower than 200 mV, only one sublattice shows up in regions without moir6 patterns while both sublattices are seen in regions with moir6 pattens. This phenomenon can be used to identify AB stacked regions. The scattering characteristics at various types of step edges are different from those of monolayer graphene edges, either armchair or zigzag.
文摘Edge technology aims to bring cloud resources(specifically,the computation,storage,and network)to the closed proximity of the edge devices,i.e.,smart devices where the data are produced and consumed.Embedding computing and application in edge devices lead to emerging of two new concepts in edge technology:edge computing and edge analytics.Edge analytics uses some techniques or algorithms to analyse the data generated by the edge devices.With the emerging of edge analytics,the edge devices have become a complete set.Currently,edge analytics is unable to provide full support to the analytic techniques.The edge devices cannot execute advanced and sophisticated analytic algorithms following various constraints such as limited power supply,small memory size,limited resources,etc.This article aims to provide a detailed discussion on edge analytics.The key contributions of the paper are as follows-a clear explanation to distinguish between the three concepts of edge technology:edge devices,edge computing,and edge analytics,along with their issues.In addition,the article discusses the implementation of edge analytics to solve many problems and applications in various areas such as retail,agriculture,industry,and healthcare.Moreover,the research papers of the state-of-the-art edge analytics are rigorously reviewed in this article to explore the existing issues,emerging challenges,research opportunities and their directions,and applications.