期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Statistical analysis of nitrogen use efficiency in Northeast China using multiple linear regression and Random Forest 被引量:2
1
作者 LIU Ying-xia Gerard B.M.HEUVELINK +4 位作者 Zhanguo BAI HE Ping JIANG Rong HUANG Shaohui XU Xin-peng 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第12期3637-3657,共21页
Understanding the spatial-temporal dynamics of crop nitrogen(N)use efficiency(NUE)and the relationship with explanatory environmental variables can support land-use management and policymaking.Nevertheless,the applica... Understanding the spatial-temporal dynamics of crop nitrogen(N)use efficiency(NUE)and the relationship with explanatory environmental variables can support land-use management and policymaking.Nevertheless,the application of statistical models for evaluating the explanatory variables of space-time variation in crop NUE is still under-researched.In this study,stepwise multiple linear regression(SMLR)and Random Forest(RF)were used to evaluate the spatial and temporal variation of NUE indicators(i.e.,partial factor productivity of N(PFPN);partial nutrient balance of N(PNBN))at county scale in Northeast China(Heilongjiang,Liaoning and Jilin provinces)from 1990 to 2015.Explanatory variables included agricultural management practices,topography,climate,economy,soil and crop types.Results revealed that the PFPN was higher in the northern parts and lower in the center of the Northeast China and PNBN increased from southern to northern parts during the 1990–2015 period.The NUE indicators decreased with time in most counties during the study period.The model efficiency coefficients of the SMLR and RF models were 0.44 and 0.84 for PFPN,and 0.67 and 0.89 for PNBN,respectively.The RF model had higher relative importance of soil and climatic covariates and lower relative importance of crop covariates compared to the SMLR model.The planting area index of vegetables and beans,soil clay content,saturated water content,enhanced vegetation index in November&December,soil bulk density,and annual minimum temperature were the main explanatory variables for both NUE indicators.This is the first study to show the quantitative relative importance of explanatory variables for NUE at a county level in Northeast China using RF and SMLR.This novel study gives reference measurements to improve crop NUE which is one of the most effective means of managing N for sustainable development,ensuring food security,alleviating environmental degradation and increasing farmer’s profitability. 展开更多
关键词 partial factor productivity of N partial nutrient balance of N stepwise multiple linear regression Random Forest county scale Northeast China
下载PDF
Estimating the Texture of Purple Soils Using Vis-NIR Spectroscopy and Optimized Conversion Models
2
作者 Baina Chen Jie Wei +2 位作者 Qiang Tang Yu Gou Chunhong Liu 《Agricultural Sciences》 CAS 2023年第2期202-218,共17页
Soil texture is an indicator of soil physical structure which delivers many ecological functions of soils such as thermal regime, plant growth, and soil quality. However, traditional methods for soil texture measureme... Soil texture is an indicator of soil physical structure which delivers many ecological functions of soils such as thermal regime, plant growth, and soil quality. However, traditional methods for soil texture measurement are time-consuming and labor-intensive. This study attempts to explore an indirect method for rapid estimating the texture of three subgroups of purple soils (i.e. calcareous, neutral, and acidic). 190 topsoil (0 - 10 cm) samples were collected from sloping croplands in Tongnan and Beibei Districts of Chongqing Municipality in China. Vis-NIR spectrum was measured and processed, and stepwise multiple linear regression (SMLR), partial least squares regression (PLSR), and back propagation neural network (BPNN) models were constructed to inform the soil texture. The clay fractions ranged from 4.40% to 27.12% while sand fractions ranged from 0.34% to 36.57%, hereby soil samples encompass three textural classes (i.e. silt, silt loam, and silty clay loam). For the original spectrum, the texture of calcareous and neutral purple soils was not significantly correlated with spectral reflectance and linear models (SMLR and PLSR) exhibited low prediction accuracy. The correlation coefficients and the goodness-of-fits between soil texture and the transformed spectra of all soil groups increased by continuum-removal (CR), first-order differential (R'), and second-order differential (R") transformations. Among them, the R" had the best performance in terms of improving the correlation coefficients and the goodness-of-fits. For the calcareous purple soil, the SMLR exceeds PLSR and BPNN with a higher coefficient of determination (R<sup>2</sup>) and the ratio of performance to inter-quartile distance (RPIQ) values and lower root mean square error of validation (RMSEV), but for the neutral and acidic purple soils, the PLSR model has a better prediction accuracy. In summary, the linear methods (SMLR and PLSR) are more reliable in estimating the texture of the three purple soil groups when using Vis-NIR spectroscopy inversion. 展开更多
关键词 Soil Texture Vis-NIR Spectra stepwise multiple linear regression Partial Least Squares regression Backpropagation Neural Network
下载PDF
Estimating purple-soil moisture content using Vis-NIR spectroscopy 被引量:5
3
作者 GOU Yu WEI Jie +3 位作者 LI Jin-lin HAN Chen TU Qing-yan LIU Chun-hong 《Journal of Mountain Science》 SCIE CSCD 2020年第9期2214-2223,共10页
Soil moisture is essential for plant growth in terrestrial ecosystems.This study investigated the visible-near infrared(Vis-NIR)spectra of three subgroups of purple soils(calcareous,neutral,and acidic)from western Cho... Soil moisture is essential for plant growth in terrestrial ecosystems.This study investigated the visible-near infrared(Vis-NIR)spectra of three subgroups of purple soils(calcareous,neutral,and acidic)from western Chongqing,China,containing different water contents.The relationship between soil moisture and spectral reflectivity(R)was analyzed using four spectral transformations,and estimation models were established for estimating the soil moisture content(SMC)of purple soil based on stepwise multiple linear regression(SMLR)and partial least squares regression(PLSR).We found that soil spectra were similar for different moisture contents,with reflectivity decreasing with increasing moisture content and following the order neutral>calcareous>acidic purple soil(at constant moisture content).Three of the four spectral transformations can highlight spectral sensitivity to SMC and significantly improve the correlation between the reflectance spectra and SMC.SMLR and PLSRmethods provide similar prediction accuracy.The PLSR-based model using a first-order reflectivity differential(R?)is more effective for estimating the SMC,and gave coefficient of determination(v2),root mean square errors of validation(RMSEV),and ratio of performance to inter-quartile distance(RPIQ)values of 0.946,1.347,and 6.328,respectively,for the calcareous purple soil,and 0.944,1.818,and 6.569,respectively,for the acidic purple soil.For neutral purple soil,the best prediction was obtained using the SMLR method with R?transformation,yieldingv2,RMSEV and RPIQ values of 0.973,0.888 and 8.791,respectively.In general,PLSR is more suitable than SMLR for estimating the SMC of purple soil. 展开更多
关键词 Purple soil Soil moisture Vis-NIR spectroscopy stepwise multiple linear regression Partial least squares regression
下载PDF
Critical Thinking and Its Relevant Factors among Undergraduates
4
作者 Yongmei Hou 《Journal of Educational Theory and Management》 2021年第2期23-30,共8页
To explore the present status of Critical thinking and its relevant factors among undergraduates.A stratified random sampling was used to select 1013 undergraduates from 7 full-time colleges in Guangdong province.They... To explore the present status of Critical thinking and its relevant factors among undergraduates.A stratified random sampling was used to select 1013 undergraduates from 7 full-time colleges in Guangdong province.They were investigated with California Critical Thinking Disposition Inventory-Chinese Version(CTDI-CV)and a Self-Compiled Personal General Information Questionnaire.(1)The total score of CTDI-CV was(254.16±38.80).The undergraduates in the four levels of critical thinking of comprehensive strong,relatively strong,contradictory scope and serious opposition accounted for 1.78%,5.31%,87.4%and 5.51%of this group,respectively.(2)Multiple stepwise linear regression showed that the total score of CTDI-CV was positively correlated with the following 10 factors such as grade,family economic status,part-time experience,the teaching method used most commonly,like reading logic books,like reading reviews or essays,father’s warmth,mother’s warmth,openness and responsibility(β=.142 to.701,all P<.05).The following 5 factors such as father’s negation,father’s overprotection,mother’s negation,mother’s overprotection and neuroticism were negatively correlated with the total score of CTDI-CV(β=-.381 to-.616,all P<0.05).The overall level of critical thinking among undergraduates is relatively low.College Students’critical thinking may be related to many factors such as family rearing,school education and personal characteristics. 展开更多
关键词 UNDERGRADUATES Critical thinking Related factors multiple stepwise linear regression
下载PDF
Pedotransfer functions for predicting bulk density of coastal soils in East China 被引量:1
5
作者 Guanghui ZHENG Caixia JIAO +4 位作者 Xianli XIE Xuefeng CUI Gang SHANG Chengyi ZHAO Rong ZENG 《Pedosphere》 SCIE CAS CSCD 2023年第6期849-856,共8页
Soil bulk density(BD) is an important physical property and an essential factor for weight-to-volume conversion. However, BD is often missing from soil databases because its direct measurement is labor-intensive, time... Soil bulk density(BD) is an important physical property and an essential factor for weight-to-volume conversion. However, BD is often missing from soil databases because its direct measurement is labor-intensive, time-consuming, and sometimes impractical, particularly on a large scale. Therefore, pedotransfer functions(PTFs) have been developed over several decades to predict BD. Here, six previously revised PTFs(including five basic functions and stepwise multiple linear regression(SMLR)) and two new PTFs, partial least squares regression(PLSR) and support vector machine regression(SVMR), were used to develop BD-predicting PTFs for coastal soils in East China. Predictor variables included soil organic carbon(SOC) and particle size distribution(PSD). To compare the robustness and reliability of the PTFs used, the calibration and prediction processes were performed 1 000 times using the calibration and validation sets divided by a random sampling algorithm. The results showed that SOC was the most important predictor, and the revised PTFs performed reasonably although only SOC was included. The PSD data were useful for a better prediction of BD, and sand and clay fractions were the second and third most important properties for predicting BD. Compared to the other PTFs, the PLSR was shown to be slightly better for the study area(the average adjusted coefficient of determination for prediction was 0.581). These results suggest that PLSR with SOC and PSD data can be used to fill in the missing BD data in coastal soil databases and provide important information to estimate coastal carbon storage, which will further improve our understanding of sea-land interactions under the conditions of ongoing global warming. 展开更多
关键词 partial least squares regression particle size distribution soil organic carbon stepwise multiple linear regression support vector machine regression
原文传递
Estimation of photolysis half-lives of dyes in a continuous-flow system with the aid of quantitative structure-property relationship 被引量:1
6
作者 Davoud BEIKNEJAD Mohammad Javad CHAICHI 《Frontiers of Environmental Science & Engineering》 SCIE EI CAS CSCD 2014年第5期683-692,共10页
In this paper the photolysis half-lives of the model dyes in water solutions and under ultraviolet (UV) radiation were determined by using a continuous-flow spectrophotometric method. A quantitative structure- prope... In this paper the photolysis half-lives of the model dyes in water solutions and under ultraviolet (UV) radiation were determined by using a continuous-flow spectrophotometric method. A quantitative structure- property relationship (QSPR) study was carried out using 21 descriptors based on different chemometric tools including stepwise multiple linear regression (MLR) and partial least squares (PLS) for the prediction of the photolysis half-life (t1/2) of dyes. For the selection of test set compounds, a K-means clustering technique was used to classify the entire data set, so that all clusters were properly represented in both training and test sets. The QSPR results obtained with these models show that in MLR-derived model, photolysis half-lives of dyes depended strongly on energy of the highest occupied molecular orbital (EHoMO), largest electron density of an atom in the molecule (ED^+) and lipophilicity (logP). While in the model derived from PLS, besides aforementioned EHOMO and ED^+ descriptors, the molecular surface area (Sm), molecular weight (M-W), electronegativity (X), energy of the second highest occupied molecular orbital (EHoMO- 1) and dipole moment (μ) had dominant effects on logt1/2 values of dyes. These were applicable for all classes of studied dyes (including monoazo, disazo, oxazine, sulfo- nephthaleins and derivatives of fluorescein). The results were also assessed for their consistency with findings from other similar studies. 展开更多
关键词 dye photolysis half-life quantitative structure-property relationship CONTINUOUS-FLOW stepwise multiple linear regression partial least squares
原文传递
Quantitative structure–biodegradability relationships for biokinetic parameter of polycyclic aromatic hydrocarbons 被引量:2
7
作者 Peng Xu Wencheng Ma +2 位作者 Hongjun Han Shengyong Jia Baolin Hou 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第4期180-185,共6页
Prediction of the biodegradability of organic pollutants is an ecologically desirable and economically feasible tool for estimating the environmental fate of chemicals. In this paper,stepwise multiple linear regressio... Prediction of the biodegradability of organic pollutants is an ecologically desirable and economically feasible tool for estimating the environmental fate of chemicals. In this paper,stepwise multiple linear regression analysis method was applied to establish quantitative structure biodegradability relationship(QSBR) between the chemical structure and a novel biodegradation activity index(qmax) of 20 polycyclic aromatic hydrocarbons(PAHs). The frequency B3LYP/6-311+G(2df,p) calculations showed no imaginary values, implying that all the structures are minima on the potential energy surface. After eliminating the parameters which had low related coefficient with qmax, the major descriptors influencing the biodegradation activity were screened to be Freq, D, MR, EHOMOand To IE. The evaluation of the developed QSBR mode, using a leave-one-out cross-validation procedure, showed that the relationships are significant and the model had good robustness and predictive ability. The results would be helpful for understanding the mechanisms governing biodegradation at the molecular level. 展开更多
关键词 Leave-one-out cross-validation stepwise multiple linear regression Polycyclic aromatic hydrocarbons QSBR
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部