In this paper the method of approximate expansion is used to analyse a perfect planar surround sound system, resulting in an order of new and upgrade systems. First reproductinn signals of the perfect system and the c...In this paper the method of approximate expansion is used to analyse a perfect planar surround sound system, resulting in an order of new and upgrade systems. First reproductinn signals of the perfect system and the characteristics of different orders systems are analysed. The independent transmission signals and decoding (reproduction) equation of the systexns are given. The compatibility among different orders systems and the problem of simplifying output channels are discussed. The problem of signal picking up, recording,transmitting and the possibility of putting the systems into practical use are studied. A sound hoage localization experiment for the systems is carried out in order to study haage localization in relaion to the numbers of transmission signals and output channels. The experimental result is consistemt with the theoretical result. This work lay down a base for practical use.展开更多
By considering higher order approximation to the interaural phase difference, a more general localization equation for stereo sound image with interchannel phase difference is derived. At very low frequency or low int...By considering higher order approximation to the interaural phase difference, a more general localization equation for stereo sound image with interchannel phase difference is derived. At very low frequency or low interchannel phase difference, the equation can be simplified to Makita theory. In general, image position is obviously affected by frequency.It is shown that image position varying with freqllency is the main reason for image width broadening in stereo reproduction with interchannel phase difference. And an extra interaural sound level difference caused by interchannel phase difference is the main reason for image naturalness degrading. In practice, it is necessary to reduce the interchannel phase difference,at least, to less than 60°.展开更多
The effect of head rotation on median plane sound source (or image) localization is studied. It is suggested that, at low frequency, the change of interaural time difference (ITD) caused by head rotation supplies info...The effect of head rotation on median plane sound source (or image) localization is studied. It is suggested that, at low frequency, the change of interaural time difference (ITD) caused by head rotation supplies information for determining sound source direction in the median plane. Based on the suggestion, the summed sound image localization equations for multiple loudspeakers arranged in the median plane are derived. Especially, for a pair of loudspeakers arranged front-back symmetrically in the median plane, the localization equations are similar to that of stereophonic sound in horizontal plane. A sound image localization experiment was carried out to prove the theoretical analysis. The results of this paper are not only available to virtual spatial auditory, but also supply a quantitative validation of the hypothesis that head rotation is a cue for sound source localization in the median plane at low frequency.展开更多
Sound source localization has numerous applications such as detection and localization of mechanical or structural failures in vehicles and buildings or bridges, security systems, collision avoidance, and robotic visi...Sound source localization has numerous applications such as detection and localization of mechanical or structural failures in vehicles and buildings or bridges, security systems, collision avoidance, and robotic vision. The paper presents the design of an anechoic chamber, sensor arrays and an analysis of how the data acquired from the sensors could be used for sound source localization and object detection. An anechoic chamber is designed to create a clean environment which isolates the experiment from external noises and reverberation echoes. An FPGA based data acquisition system is developed for a flexible acoustic sensor array platform. Using this sensor platform, we investigate direction of arrival estimation and source localization experiments with different geometries and with different numbers of sensors. We further present a discussion of parameters that influence the sensitivity and accuracy of the results of these experiments.展开更多
3D audio effects can provide immersive auditory experience, but we often face the so-called in-head localization (IHL) problem in headphone sound reproduction. To ad- dress this problem, we propose an effective soun...3D audio effects can provide immersive auditory experience, but we often face the so-called in-head localization (IHL) problem in headphone sound reproduction. To ad- dress this problem, we propose an effective sound image externalization approach. Specifically, we consider several important factors related to sound propagation, which include image-source model based early reflections with distance decay, wall absorption and air absorption, late reverberation and other dynamic factors like head movement. We apply our sound image externalization approach to a headphone based real-time 3D audio system. Subjective listening tests show that the sound image externalization performance is significantly improved and the sound source direction is preserved as well. A/B preference test further shows that, as compared with a recent popular approach, the proposed approach is mostly preferred by the listeners.展开更多
文摘In this paper the method of approximate expansion is used to analyse a perfect planar surround sound system, resulting in an order of new and upgrade systems. First reproductinn signals of the perfect system and the characteristics of different orders systems are analysed. The independent transmission signals and decoding (reproduction) equation of the systexns are given. The compatibility among different orders systems and the problem of simplifying output channels are discussed. The problem of signal picking up, recording,transmitting and the possibility of putting the systems into practical use are studied. A sound hoage localization experiment for the systems is carried out in order to study haage localization in relaion to the numbers of transmission signals and output channels. The experimental result is consistemt with the theoretical result. This work lay down a base for practical use.
文摘By considering higher order approximation to the interaural phase difference, a more general localization equation for stereo sound image with interchannel phase difference is derived. At very low frequency or low interchannel phase difference, the equation can be simplified to Makita theory. In general, image position is obviously affected by frequency.It is shown that image position varying with freqllency is the main reason for image width broadening in stereo reproduction with interchannel phase difference. And an extra interaural sound level difference caused by interchannel phase difference is the main reason for image naturalness degrading. In practice, it is necessary to reduce the interchannel phase difference,at least, to less than 60°.
基金supported by the National Natural Science Foundation of China(Grant No.19974012)
文摘The effect of head rotation on median plane sound source (or image) localization is studied. It is suggested that, at low frequency, the change of interaural time difference (ITD) caused by head rotation supplies information for determining sound source direction in the median plane. Based on the suggestion, the summed sound image localization equations for multiple loudspeakers arranged in the median plane are derived. Especially, for a pair of loudspeakers arranged front-back symmetrically in the median plane, the localization equations are similar to that of stereophonic sound in horizontal plane. A sound image localization experiment was carried out to prove the theoretical analysis. The results of this paper are not only available to virtual spatial auditory, but also supply a quantitative validation of the hypothesis that head rotation is a cue for sound source localization in the median plane at low frequency.
文摘Sound source localization has numerous applications such as detection and localization of mechanical or structural failures in vehicles and buildings or bridges, security systems, collision avoidance, and robotic vision. The paper presents the design of an anechoic chamber, sensor arrays and an analysis of how the data acquired from the sensors could be used for sound source localization and object detection. An anechoic chamber is designed to create a clean environment which isolates the experiment from external noises and reverberation echoes. An FPGA based data acquisition system is developed for a flexible acoustic sensor array platform. Using this sensor platform, we investigate direction of arrival estimation and source localization experiments with different geometries and with different numbers of sensors. We further present a discussion of parameters that influence the sensitivity and accuracy of the results of these experiments.
文摘3D audio effects can provide immersive auditory experience, but we often face the so-called in-head localization (IHL) problem in headphone sound reproduction. To ad- dress this problem, we propose an effective sound image externalization approach. Specifically, we consider several important factors related to sound propagation, which include image-source model based early reflections with distance decay, wall absorption and air absorption, late reverberation and other dynamic factors like head movement. We apply our sound image externalization approach to a headphone based real-time 3D audio system. Subjective listening tests show that the sound image externalization performance is significantly improved and the sound source direction is preserved as well. A/B preference test further shows that, as compared with a recent popular approach, the proposed approach is mostly preferred by the listeners.