期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Ground-Based Hyperspectral Stereoscopic Remote Sensing Network: A Promising Strategy to Learn Coordinated Control of O_(3) and PM_(2.5) over China 被引量:5
1
作者 Cheng Liu Chengzhi Xing +15 位作者 Qihou Hu Qihua Li Haoran Liu Qianqian Hong Wei Tan Xiangguang Ji Hua Lin Chuan Lu Jinan Lin Hanyang Liu Shaocong Wei Jian Chen Kunpeng Yang Shuntian Wang Ting Liu Yujia Chen 《Engineering》 SCIE EI CAS 2022年第12期71-83,共13页
With the coming of the“14th Five-Year Plan,”the coordinated control of particulate matter with an aerodynamic diameter no greater than 2.5 lm(PM_(2.5))and O_(3) has become a major issue of air pollution prevention a... With the coming of the“14th Five-Year Plan,”the coordinated control of particulate matter with an aerodynamic diameter no greater than 2.5 lm(PM_(2.5))and O_(3) has become a major issue of air pollution prevention and control in China.The stereoscopic monitoring of regional PM_(2.5) and O_(3) and their precursors is crucial to achieve coordinated control.However,current monitoring networks are currently inadequate for monitoring the vertical profiles of both PM_(2.5) and O_(3) simultaneously and support air quality control.The University of Science and Technology of China(USTC)has established a nationwide ground-based hyperspectral stereoscopic remote sensing network based on multi-axis differential optical absorption spectroscopy(MAX-DOAS)since 2015.This monitoring network provides a significant opportunity for the regional coordinated control of PM_(2.5) and O_(3) in China.One-year vertical profiles of aerosol,NO_(2) and HCHO monitored from four MAX-DOAS stations installed in four megacities(Beijing,Shanghai,Shenzhen,and Chongqing)were used to characterize their vertical distribution differences in four key regions,Jing–Jin–Ji(JJJ),Yangtze River Delta(YRD),Pearl River Delta(PRD),and Sichuan Basin(SB),respectively.The normalized and yearly averaged aerosol vertical profiles below 400 m in JJJ and PRD exhibit a box shape and a Gaussian shape,respectively,and both show exponential shapes in YRD and SB.The NO_(2) vertical profiles in four regions all exhibit exponential shapes because of vehicle emissions.The shape of the HCHO vertical profile in JJJ and PRD was Gaussian,whereas an exponential shape was shown in YRD and SB.Moreover,a regional transport event occurred at an altitude of 600–1000 m was monitored in the southwest–northeast pathway of the North China Plain(NCP)by five MAX-DOAS stations(Shijiazhuang(SJZ),Wangdu(WD),Nancheng(NC),Chinese Academy of Meteorological Sciences(CAMS),and University of Chinese Academy of Sciences(UCAS))belonging to the above network.The aerosol optical depths(AOD)in these five stations decreased in the order of SJZ>WD>NC>CAMS>UCAS.The short-distance regional transport of NO2 in the 700–900 m layer was monitored between WD and NC.As an important precursor of secondary aerosol,the peak of NO_(2) air mass in WD and NC all occurred 1 h earlier than that of aerosol.This was also observed for the short-distance regional transport of HCHO in the 700–900 m layer between NC and CAMS,which potentially affected the O_(3) concentration in Beijing.Finally,CAMS was selected as a typical site to determine the O_(3)–NO_(x)–volatile organic compounds(VOCs)sensitivities in vertical space.We found the production of O_(3) changed from predominantly VOCs-limited conditions to mainly mixed VOCs–NO_(x)-limited condition from the 0–100 m layer to the 200–300 m layer.In addition,the downward transport of O_(3) could contribute to the increase of ground surface O_(3) concentration.This ground-based hyperspectral stereoscopic remote sensing network provide a promising strategy to support management of PM_(2.5) and O_(3) and their precursors and conduct attribution of sources. 展开更多
关键词 MAX-DOAS stereoscopic monitoring Regional transport Ozone production Control strategy
下载PDF
Research on Decision Support System (DSS) of Atmospheric Environment Management in Anhui Province Based on Air Quality Forecasting
2
作者 Geng Tianzhao Ji Mian +4 位作者 Zhu Yu Wang Huan Dong Hao Zhao Xuhui Cheng Long 《Meteorological and Environmental Research》 CAS 2018年第4期61-65,共5页
With the atmospheric stereoscopic monitoring, air quality forecasting and decision of environment management as the main line, and comprehensive management system as the guidance, five platforms including infrastruct... With the atmospheric stereoscopic monitoring, air quality forecasting and decision of environment management as the main line, and comprehensive management system as the guidance, five platforms including infrastructure, technological support, monitoring and early monitoring, decision support and information services were established. These platforms have 15 subsystems, including stereoscopic monitoring network, visual business consultation, high-performance computing environment, comprehensive management of atmospheric data, emission inventories of pollu-tion sources, evaluation tools of atmospheric models, monitoring and management of air pollution, forecasting and early warning of air quality, diag-nostic analysis of atmospheric environment, tracking of air pollution sources, emergency management of air pollution, conformity management of air quality, comprehensive display of information, releasing of information to external networks, and releasing of information by mobile networks. The decision support system (DSS) of atmospheric environment management could realize an integration business system of 11 air quality forecast - heavy pollution weather warning - diagnosis of pollution causes (dynamic analysis of pollution sources) -air quality conformity planning (air pollu-tion emergency management) -evaluation of forecasting and warning results (evaluation pf management measures) -air quality forecasting" and provide the technical support for the prevention and control of atmosphere pollution in Anhui province. 展开更多
关键词 Atmospheric stereoscopic monitoring Air quality forecasting Decision of environmental management
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部