With the coming of the“14th Five-Year Plan,”the coordinated control of particulate matter with an aerodynamic diameter no greater than 2.5 lm(PM_(2.5))and O_(3) has become a major issue of air pollution prevention a...With the coming of the“14th Five-Year Plan,”the coordinated control of particulate matter with an aerodynamic diameter no greater than 2.5 lm(PM_(2.5))and O_(3) has become a major issue of air pollution prevention and control in China.The stereoscopic monitoring of regional PM_(2.5) and O_(3) and their precursors is crucial to achieve coordinated control.However,current monitoring networks are currently inadequate for monitoring the vertical profiles of both PM_(2.5) and O_(3) simultaneously and support air quality control.The University of Science and Technology of China(USTC)has established a nationwide ground-based hyperspectral stereoscopic remote sensing network based on multi-axis differential optical absorption spectroscopy(MAX-DOAS)since 2015.This monitoring network provides a significant opportunity for the regional coordinated control of PM_(2.5) and O_(3) in China.One-year vertical profiles of aerosol,NO_(2) and HCHO monitored from four MAX-DOAS stations installed in four megacities(Beijing,Shanghai,Shenzhen,and Chongqing)were used to characterize their vertical distribution differences in four key regions,Jing–Jin–Ji(JJJ),Yangtze River Delta(YRD),Pearl River Delta(PRD),and Sichuan Basin(SB),respectively.The normalized and yearly averaged aerosol vertical profiles below 400 m in JJJ and PRD exhibit a box shape and a Gaussian shape,respectively,and both show exponential shapes in YRD and SB.The NO_(2) vertical profiles in four regions all exhibit exponential shapes because of vehicle emissions.The shape of the HCHO vertical profile in JJJ and PRD was Gaussian,whereas an exponential shape was shown in YRD and SB.Moreover,a regional transport event occurred at an altitude of 600–1000 m was monitored in the southwest–northeast pathway of the North China Plain(NCP)by five MAX-DOAS stations(Shijiazhuang(SJZ),Wangdu(WD),Nancheng(NC),Chinese Academy of Meteorological Sciences(CAMS),and University of Chinese Academy of Sciences(UCAS))belonging to the above network.The aerosol optical depths(AOD)in these five stations decreased in the order of SJZ>WD>NC>CAMS>UCAS.The short-distance regional transport of NO2 in the 700–900 m layer was monitored between WD and NC.As an important precursor of secondary aerosol,the peak of NO_(2) air mass in WD and NC all occurred 1 h earlier than that of aerosol.This was also observed for the short-distance regional transport of HCHO in the 700–900 m layer between NC and CAMS,which potentially affected the O_(3) concentration in Beijing.Finally,CAMS was selected as a typical site to determine the O_(3)–NO_(x)–volatile organic compounds(VOCs)sensitivities in vertical space.We found the production of O_(3) changed from predominantly VOCs-limited conditions to mainly mixed VOCs–NO_(x)-limited condition from the 0–100 m layer to the 200–300 m layer.In addition,the downward transport of O_(3) could contribute to the increase of ground surface O_(3) concentration.This ground-based hyperspectral stereoscopic remote sensing network provide a promising strategy to support management of PM_(2.5) and O_(3) and their precursors and conduct attribution of sources.展开更多
With the atmospheric stereoscopic monitoring, air quality forecasting and decision of environment management as the main line, and comprehensive management system as the guidance, five platforms including infrastruct...With the atmospheric stereoscopic monitoring, air quality forecasting and decision of environment management as the main line, and comprehensive management system as the guidance, five platforms including infrastructure, technological support, monitoring and early monitoring, decision support and information services were established. These platforms have 15 subsystems, including stereoscopic monitoring network, visual business consultation, high-performance computing environment, comprehensive management of atmospheric data, emission inventories of pollu-tion sources, evaluation tools of atmospheric models, monitoring and management of air pollution, forecasting and early warning of air quality, diag-nostic analysis of atmospheric environment, tracking of air pollution sources, emergency management of air pollution, conformity management of air quality, comprehensive display of information, releasing of information to external networks, and releasing of information by mobile networks. The decision support system (DSS) of atmospheric environment management could realize an integration business system of 11 air quality forecast - heavy pollution weather warning - diagnosis of pollution causes (dynamic analysis of pollution sources) -air quality conformity planning (air pollu-tion emergency management) -evaluation of forecasting and warning results (evaluation pf management measures) -air quality forecasting" and provide the technical support for the prevention and control of atmosphere pollution in Anhui province.展开更多
基金This research is supported by grants from the National Key Research and Development Program of China(2018YFC0213104)Project supported by the Presidential Foundation of the Hefei Institutes of Physical Science,Chinese Academy Sciences,China-“Spark”(YZJJ2021QN06)+6 种基金National Natural Science Foundation of China(41722501,91544212,51778596,41575021,41977184,and 41875043)National Key Research and Development Program of China(2017YFC0210002,2016YFC0203302,and 2017YFC0212800)Anhui Science and Technology Major Project(18030801111)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA23020301)the National Key Project for Causes and Control of Heavy Air Pollution(DQGG0102 and DQGG0205)the National High-Resolution Earth Observation Project of China(05-Y30B01-9001-19/20-3)Civil Aerospace Technology Advance Research Project(Y7K00100KJ).From 0-100 and 200-300 m layers,the production of O_(3) changed from predominantly VOCs-limited condition to mainly mixed VOCs-NOx-limited condition.
文摘With the coming of the“14th Five-Year Plan,”the coordinated control of particulate matter with an aerodynamic diameter no greater than 2.5 lm(PM_(2.5))and O_(3) has become a major issue of air pollution prevention and control in China.The stereoscopic monitoring of regional PM_(2.5) and O_(3) and their precursors is crucial to achieve coordinated control.However,current monitoring networks are currently inadequate for monitoring the vertical profiles of both PM_(2.5) and O_(3) simultaneously and support air quality control.The University of Science and Technology of China(USTC)has established a nationwide ground-based hyperspectral stereoscopic remote sensing network based on multi-axis differential optical absorption spectroscopy(MAX-DOAS)since 2015.This monitoring network provides a significant opportunity for the regional coordinated control of PM_(2.5) and O_(3) in China.One-year vertical profiles of aerosol,NO_(2) and HCHO monitored from four MAX-DOAS stations installed in four megacities(Beijing,Shanghai,Shenzhen,and Chongqing)were used to characterize their vertical distribution differences in four key regions,Jing–Jin–Ji(JJJ),Yangtze River Delta(YRD),Pearl River Delta(PRD),and Sichuan Basin(SB),respectively.The normalized and yearly averaged aerosol vertical profiles below 400 m in JJJ and PRD exhibit a box shape and a Gaussian shape,respectively,and both show exponential shapes in YRD and SB.The NO_(2) vertical profiles in four regions all exhibit exponential shapes because of vehicle emissions.The shape of the HCHO vertical profile in JJJ and PRD was Gaussian,whereas an exponential shape was shown in YRD and SB.Moreover,a regional transport event occurred at an altitude of 600–1000 m was monitored in the southwest–northeast pathway of the North China Plain(NCP)by five MAX-DOAS stations(Shijiazhuang(SJZ),Wangdu(WD),Nancheng(NC),Chinese Academy of Meteorological Sciences(CAMS),and University of Chinese Academy of Sciences(UCAS))belonging to the above network.The aerosol optical depths(AOD)in these five stations decreased in the order of SJZ>WD>NC>CAMS>UCAS.The short-distance regional transport of NO2 in the 700–900 m layer was monitored between WD and NC.As an important precursor of secondary aerosol,the peak of NO_(2) air mass in WD and NC all occurred 1 h earlier than that of aerosol.This was also observed for the short-distance regional transport of HCHO in the 700–900 m layer between NC and CAMS,which potentially affected the O_(3) concentration in Beijing.Finally,CAMS was selected as a typical site to determine the O_(3)–NO_(x)–volatile organic compounds(VOCs)sensitivities in vertical space.We found the production of O_(3) changed from predominantly VOCs-limited conditions to mainly mixed VOCs–NO_(x)-limited condition from the 0–100 m layer to the 200–300 m layer.In addition,the downward transport of O_(3) could contribute to the increase of ground surface O_(3) concentration.This ground-based hyperspectral stereoscopic remote sensing network provide a promising strategy to support management of PM_(2.5) and O_(3) and their precursors and conduct attribution of sources.
基金Supported by the National Science and Technology Support Plan(2014BAC22B06)Public Welfare Research Project of Science and Technology Department of Anhui Province in 2017(1704f0804056)
文摘With the atmospheric stereoscopic monitoring, air quality forecasting and decision of environment management as the main line, and comprehensive management system as the guidance, five platforms including infrastructure, technological support, monitoring and early monitoring, decision support and information services were established. These platforms have 15 subsystems, including stereoscopic monitoring network, visual business consultation, high-performance computing environment, comprehensive management of atmospheric data, emission inventories of pollu-tion sources, evaluation tools of atmospheric models, monitoring and management of air pollution, forecasting and early warning of air quality, diag-nostic analysis of atmospheric environment, tracking of air pollution sources, emergency management of air pollution, conformity management of air quality, comprehensive display of information, releasing of information to external networks, and releasing of information by mobile networks. The decision support system (DSS) of atmospheric environment management could realize an integration business system of 11 air quality forecast - heavy pollution weather warning - diagnosis of pollution causes (dynamic analysis of pollution sources) -air quality conformity planning (air pollu-tion emergency management) -evaluation of forecasting and warning results (evaluation pf management measures) -air quality forecasting" and provide the technical support for the prevention and control of atmosphere pollution in Anhui province.