期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Potassium deficiency inhibits steviol glycosides synthesis by limiting leaf sugar metabolism in stevia(Stevia rebaudiana Bertoni)plants 被引量:2
1
作者 SUN Yu-ming HUANG Xiao-lei +4 位作者 ZHANG Ting YANG Yong-heng CHENG Xiao-fang XU Xiao-yang YUAN Hai-yan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第11期2932-2943,共12页
The steviol glycosides(SGs)in stevia(Stevia rebaudiana Bertoni)leaves are becoming increasingly valuable due to its high sweetness but low calorific value,which is driving the development of stevia commercial cultivat... The steviol glycosides(SGs)in stevia(Stevia rebaudiana Bertoni)leaves are becoming increasingly valuable due to its high sweetness but low calorific value,which is driving the development of stevia commercial cultivation.Optimizing fertilization management can effectively increase SGs productivity,but knowledge on the relationship between potassium(K)fertilization and SGs production is still lacking.In this study,pot experiments were conducted in order to investigate the effect of K deficiency on SGs synthesis in stevia leaves,as well as the underlying mechanisms.Our results showed that when compared with standard K fertilization,K deficiency treatment has no significant effect on the biomass of stevia plant grown in a given soil with high K contents.However,K deficiency critically decreased leaf SGs contents as well as the expression of SGs synthesis-related genes.The contents of different sugar components decreased and the activities of sugar metabolism-related enzymes were inhibited under the K deficiency condition.Moreover,spraying sucrose on the leaves of stevia seedlings diminished the inhibitory effect caused by K deficiency.Our results also revealed the significant positive correlations between sucrose,glucose and SGs contents.Overall,our results suggest that K deficiency would suppress the synthesis of SGs in stevia leaves,and this effect may be mediated by the leaf sugar metabolism.Our findings provide new insights into the improvement of SGs production potential. 展开更多
关键词 Stevia rebaudiana Bertoni steviol glycosides potassium deficiency sugar metabolism
下载PDF
A review on current conventional and biotechnical approaches to enhance biosynthesis of steviol glycosides in Stevia rebaudiana 被引量:1
2
作者 Samra Basharat Ziyang Huang +6 位作者 Mengyue Gong Xueqin Lv Aqsa Ahmed Iftikhar Hussain Jianghua Li Guocheng Du Long Liu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第2期92-104,共13页
Stevia rebaudiana Bertoni is commonly called stevia and mostly found in the north east regions of South America.It is an herbaceous and shrubby plant belonging to the Asteraceae family.Stevia is considered as a natura... Stevia rebaudiana Bertoni is commonly called stevia and mostly found in the north east regions of South America.It is an herbaceous and shrubby plant belonging to the Asteraceae family.Stevia is considered as a natural sweetener and a commercially important plant worldwide.The leaves of S.rebaudiana contain steviol glycosides(SGs)which are highly potent and non-caloric sweeteners.The sweetening property of S.rebaudiana is contributed to the presence of these high potency,calorie free steviol glycosides.SGs are considerably suitable for replacing sucrose and other artificial sweetening agents which are used in different industries and pharmaceuticals.SGs amount in the plant mostly varies from 8%to 10%,and the enhancement of SGs is always in demand.These glycosides have the potential to become healthier alternatives to other table sugars for having desirable taste and zero calories.SGs are almost 300 times sweeter than sucrose.Being used as alternative sugar intensifier the commercial value of this plant in biopharmaceutical,food and beverages industries and in international market is increasing day by day.SGs have made stevia an important part of the medicinal world as well as the food and beverage industry,but the limited production of plant material is not fulfilling the higher global market demand.Therefore,researchers are working worldwide to increase the production of important SGs through the intercession of different biotechnological approaches in S.rebaudiana.This review aims to describe the emerging biotechnological strategies and approaches to understand,stimulate and enhance biosynthesis of secondary metabolites in stevia.Conventional and biotechnological methods for the production of steviol glycosides have been briefly reviewed and discussed. 展开更多
关键词 steviol glycosides BIOSYNTHESIS Secondary metabolites Stevia rebaudiana
下载PDF
Isolation and functional analysis of SrMYB1,a direct transcriptional repressor of SrUGT76G1 in Stevia rebaudiana 被引量:1
3
作者 ZHANG Ting ZHANG Yong-xia +5 位作者 SUN Yu-ming XU Xiao-yang WANG Yin-jie CHONG Xinran YANG Yong-heng YUAN Hai-yan 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2023年第4期1058-1067,共10页
SrUGT76G1,the most well-studied diterpene glycosyltransferase in Stevia rebaudiana,is key to the biosynthesis of economically important steviol glycosides(SGs).However,the molecular regulatory mechanism of SrUGT76G1 h... SrUGT76G1,the most well-studied diterpene glycosyltransferase in Stevia rebaudiana,is key to the biosynthesis of economically important steviol glycosides(SGs).However,the molecular regulatory mechanism of SrUGT76G1 has rarely been explored.In this study,we identified a MYB transcription factor,SrMYB1,using a yeast one-hybrid screening assay.SrMYB1 belongs to the typical R2R3-type MYB protein and is specifically localized in the nucleus with strong transactivation activity.The transcript of SrMYB1 is predominantly accumulated in flowers,but is also present at a lower level in leaves.Yeast one-hybrid and electrophoretic mobility shift assays verified that SrMYB1 binds directly to the MYB binding sites in the F4-3 fragment(+50–(–141))of the SrUGT76G1 promoter.Furthermore,we found that SrMYB1 could significantly repress the expression of SrUGT76G1 in both epidermal cells of tobacco leaves and stevia callus.Taken together,our results demonstrate that SrMYB1 is an essential upstream regulator of SrUGT76G1 and provide novel insight into the regulatory network for the SGs metabolic pathway in S.rebaudiana. 展开更多
关键词 Stevia rebaudiana SrUGT76G1 MYB transcription factor transcriptional regulation steviol glycosides
下载PDF
Compounds from Stevia rebaudiana Bertoni leaves: An overview of non-conventional extraction methods and challenges
4
作者 Dj´essica Tatiane Raspe Camila da Silva Silvio Cl´audio da Costa 《Food Bioscience》 SCIE 2022年第2期108-121,共14页
To overcome the inconveniences related to its conventional obtainment of natural sweeteners and active compounds from Stevia rebaudiana Bertoni,methods involving application of technology,such as ultrasound assisted e... To overcome the inconveniences related to its conventional obtainment of natural sweeteners and active compounds from Stevia rebaudiana Bertoni,methods involving application of technology,such as ultrasound assisted extraction,microwave assisted extraction,extraction under pressurized conditions by means of pressurized liquid extraction,subcritical water extraction and supercritical fluid extraction have been investigated.In this review,these emerging techniques were analyzed and discussed,the process variables and operational strategies,their impacts on the extraction and their comparison against the conventional techniques were demonstrated.Simplicity and the possibility of operational automation,the use of less energy and solvents,in addition to the reduced complexity of the subsequent purification steps,make up viable alternatives suitable for a possible industrial application.These processes leverage the concept of green chemistry,but still suffer limitations related to acquisition and maintenance costs,in addition to the effects of the action of some of these technologies remaining unexplored. 展开更多
关键词 Active compounds Natural sweeteners steviol glycosides Technology application
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部