利用有限元通用软件 ANSYS建立了大射电望远镜精调 Stewart 平台并联机器人的有限元模型;采用ANSYS参数化设计语言(APDL)实现了该模型的参数化设计;通过对任意位姿结构进行模态分析,计算出并联机器人在其工作空间内的固有频率分布;... 利用有限元通用软件 ANSYS建立了大射电望远镜精调 Stewart 平台并联机器人的有限元模型;采用ANSYS参数化设计语言(APDL)实现了该模型的参数化设计;通过对任意位姿结构进行模态分析,计算出并联机器人在其工作空间内的固有频率分布;根据伺服系统设计原则,确定了该并联机器人的伺服带宽。展开更多
并联机床被誉为21世纪的新型加工中心,但它所能发挥的性能仍受到现有机构计算理论、测量及标定方法的限制.目前已有的正向求解方法,由于非线性的影响,有求解过程复杂和多解的问题,难以用于并联机床的运动控制,为此,建立了6-3 S tew art...并联机床被誉为21世纪的新型加工中心,但它所能发挥的性能仍受到现有机构计算理论、测量及标定方法的限制.目前已有的正向求解方法,由于非线性的影响,有求解过程复杂和多解的问题,难以用于并联机床的运动控制,为此,建立了6-3 S tew art平台式并联机床结构的运动学和力学模型,其中采用对称分布的3个位移传感器用于机构的位置分析,并将降阶的运算操作与传感器方式相结合,实现了机构分析的正向算法,并开发了数值模拟程序.这种方法明显降低运算消耗,并提高了精度.展开更多
针对Stewart平台的六自由度(six degrees of freedom,6-DOF)轨迹跟踪问题,提出一种基于神经网络的非奇异终端滑模控制方法并应用于Stewart平台的位置姿态控制中。通过分析Stewart平台的位置反解和速度反解,建立运动学方程,利用牛顿-欧...针对Stewart平台的六自由度(six degrees of freedom,6-DOF)轨迹跟踪问题,提出一种基于神经网络的非奇异终端滑模控制方法并应用于Stewart平台的位置姿态控制中。通过分析Stewart平台的位置反解和速度反解,建立运动学方程,利用牛顿-欧拉方程建立动力学方程,并结合加速度反解得到了平台的状态空间表达式;基于非奇异滑模面函数,设计非奇异终端滑模控制律。考虑到径向基函数(radial Basis function,RBF)神经网络的逼近特性,采用RBF神经网络对模型未知部分进行自适应逼近,并利用Lyapunov第二法设计了自适应律;通过仿真证明控制器设计的有效性。仿真结果表明,相比于比例积分微分(proportional integral derivative,PID)控制器,提出的RBF神经网络非奇异终端滑模控制器具有更好的轨迹跟踪精度和动态特性。展开更多
文摘并联机床被誉为21世纪的新型加工中心,但它所能发挥的性能仍受到现有机构计算理论、测量及标定方法的限制.目前已有的正向求解方法,由于非线性的影响,有求解过程复杂和多解的问题,难以用于并联机床的运动控制,为此,建立了6-3 S tew art平台式并联机床结构的运动学和力学模型,其中采用对称分布的3个位移传感器用于机构的位置分析,并将降阶的运算操作与传感器方式相结合,实现了机构分析的正向算法,并开发了数值模拟程序.这种方法明显降低运算消耗,并提高了精度.
文摘针对Stewart平台的六自由度(six degrees of freedom,6-DOF)轨迹跟踪问题,提出一种基于神经网络的非奇异终端滑模控制方法并应用于Stewart平台的位置姿态控制中。通过分析Stewart平台的位置反解和速度反解,建立运动学方程,利用牛顿-欧拉方程建立动力学方程,并结合加速度反解得到了平台的状态空间表达式;基于非奇异滑模面函数,设计非奇异终端滑模控制律。考虑到径向基函数(radial Basis function,RBF)神经网络的逼近特性,采用RBF神经网络对模型未知部分进行自适应逼近,并利用Lyapunov第二法设计了自适应律;通过仿真证明控制器设计的有效性。仿真结果表明,相比于比例积分微分(proportional integral derivative,PID)控制器,提出的RBF神经网络非奇异终端滑模控制器具有更好的轨迹跟踪精度和动态特性。