A type of complex systems under both random influence and memory effects is considered. The systems are modeled by a class of nonlinear stochastic delay-integrodifferential equations. A delay-dependent stability crite...A type of complex systems under both random influence and memory effects is considered. The systems are modeled by a class of nonlinear stochastic delay-integrodifferential equations. A delay-dependent stability criterion for such equations is derived under the condition that the time lags are small enough. Numerical simulations are presented to illustrate the theoretical result.展开更多
This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear neutral delay-integro-differential equations.We investigate the dissipativity properties of-algebraically stable ...This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear neutral delay-integro-differential equations.We investigate the dissipativity properties of-algebraically stable multistep Runge-Kutta methods with constrained grid.The finite-dimensional and infinite-dimensional dissipativity results of-algebraically stable multistep Runge-Kutta methods are obtained.展开更多
A class of general modified split-step balanced methods proposed in the paper can be applied to solve stiff stochastic differential systems with m-dimensional multiplicative noise. Compared to some other already repor...A class of general modified split-step balanced methods proposed in the paper can be applied to solve stiff stochastic differential systems with m-dimensional multiplicative noise. Compared to some other already reported split-step balanced methods, the drift increment function of the methods can be taken from any chosen ane-step ordinary differential equations (ODEs) solver. The schemes is proved to be strong convergent with order one. For the mean-square stability analysis, the investigation is confined to two cases. Some numerical experiments are reported to testify the performance and the effectiveness of the methods.展开更多
A backward differentiation formula (BDF) has been shown to be an effective way to solve a system of ordinary differential equations (ODEs) that have some degree of stiffness. However, sometimes, due to high-frequency ...A backward differentiation formula (BDF) has been shown to be an effective way to solve a system of ordinary differential equations (ODEs) that have some degree of stiffness. However, sometimes, due to high-frequency variations in the external time series of boundary conditions, a small time-step is required to solve the ODE system throughout the entire simulation period, which can lead to a high computational cost, slower response, and need for more memory resources. One possible strategy to overcome this problem is to dynamically adjust the time-step with respect to the system’s stiffness. Therefore, small time-steps can be applied when needed, and larger time-steps can be used when allowable. This paper presents a new algorithm for adjusting the dynamic time-step based on a BDF discretization method. The parameters used to dynamically adjust the size of the time-step can be optimally specified to result in a minimum computation time and reasonable accuracy for a particular case of ODEs. The proposed algorithm was applied to solve the system of ODEs obtained from an activated sludge model (ASM) for biological wastewater treatment processes. The algorithm was tested for various solver parameters, and the optimum set of three adjustable parameters that represented minimum computation time was identified. In addition, the accuracy of the algorithm was evaluated for various sets of solver parameters.展开更多
In this paper we discuss diagonally implicit and semi-implicit methods based on the three-stage stiffly accurate Runge-Kutta methods for solving Stratonovich stochastic differential equations(SDEs).Two methods,a thr...In this paper we discuss diagonally implicit and semi-implicit methods based on the three-stage stiffly accurate Runge-Kutta methods for solving Stratonovich stochastic differential equations(SDEs).Two methods,a three-stage stiffly accurate semi-implicit(SASI3) method and a three-stage stiffly accurate diagonally implicit (SADI3) method,are constructed in this paper.In particular,the truncated random variable is used in the implicit method.The stability properties and numerical results show the effectiveness of these methods in the pathwise approximation of stiff SDEs.展开更多
A nonlinear numerical integration method, based on forward and backward Euler integration methods, is proposed for solving the stiff dynamic equations of a flexible multibody system, which are transformed from the sec...A nonlinear numerical integration method, based on forward and backward Euler integration methods, is proposed for solving the stiff dynamic equations of a flexible multibody system, which are transformed from the second order to the first order by adopting state variables. This method is of A0 stability and infinity stability. The numerical solutions violating the constraint equations are corrected by Blajer's modification approach. Simulation results of a slider-crank mechanism by the proposed method are in good agreement with ones from other literature.展开更多
Numerical algorithms for stiff stochastic differential equations are developed using lin-ear approximations of the fast diffusion processes,under the assumption of decoupling between fast and slow processes.Three nume...Numerical algorithms for stiff stochastic differential equations are developed using lin-ear approximations of the fast diffusion processes,under the assumption of decoupling between fast and slow processes.Three numerical schemes are proposed,all of which are based on the linearized formulation albeit with different degrees of approximation.The schemes are of comparable complexity to the classical explicit Euler-Maruyama scheme but can achieve better accuracy at larger time steps in stiff systems.Convergence analysis is conducted for one of the schemes,that shows it to have a strong convergence order of 1/2 and a weak convergence order of 1.Approximations arriving at the other two schemes are discussed.Numerical experiments are carried out to examine the convergence of the schemes proposed on model problems.展开更多
The behavior of beams with variable stiffness subjected to the action of variable loadings (impulse or harmonic) is analyzed in this paper using the successive approximation method. This successive approximation metho...The behavior of beams with variable stiffness subjected to the action of variable loadings (impulse or harmonic) is analyzed in this paper using the successive approximation method. This successive approximation method is a technique for numerical integration of partial differential equations involving both the space and time, with well-known initial conditions on time and boundary conditions on the space. This technique, although having been applied to beams with constant stiffness, is new for the case of beams with variable stiffness, and it aims to use a quadratic parabola (in time) to approximate the solutions of the differential equations of dynamics. The spatial part is studied using the successive approximation method of the partial differential equations obtained, in order to transform them into a system of time-dependent ordinary differential equations. Thus, the integration algorithm using this technique is established and applied to examples of beams with variable stiffness, under variable loading, and with the different cases of supports chosen in the literature. We have thus calculated the cases of beams with constant or variable rigidity with articulated or embedded supports, subjected to the action of an instantaneous impulse and harmonic loads distributed over its entire length. In order to justify the robustness of the successive approximation method considered in this work, an example of an articulated beam with constant stiffness subjected to a distributed harmonic load was calculated analytically, and the results obtained compared to those found numerically for various steps (spatial h and temporal τ ¯ ) of calculus, and the difference between the values obtained by the two methods was small. For example for ( h=1/8 , τ ¯ =1/ 64 ), the difference between these values is 17%.展开更多
The derivation and validation of analytical equations for predicting the tensile initial stiffness of threadfixed one-side bolts(TOBs),connected to enclosed rectangular hollow section(RHS)columns,is presented in this ...The derivation and validation of analytical equations for predicting the tensile initial stiffness of threadfixed one-side bolts(TOBs),connected to enclosed rectangular hollow section(RHS)columns,is presented in this paper.Two unknown stiffness components are considered:the TOBs connection and the enclosed RHS face.First,the trapezoidal thread of TOB,as an equivalent cantilevered beam subjected to uniformly distributed loads,is analyzed to determine the associated deformations.Based on the findings,the thread-shank serial-parallel stiffness model of TOB connection is proposed.For analysis of the tensile stiffness of the enclosed RHS face due to two bolt forces,the four sidewalls are treated as rotation constraints,thus reducing the problem to a two-dimensional plate analysis.According to the load superposition method,the deflection of the face plate is resolved into three components under various boundary and load conditions.Referring to the plate deflection theory of Timoshenko,the analytical solutions for the three deflections are derived in terms of the variables of bolt spacing,RHS thickness,height to width ratio,etc.Finally,the validity of the above stiffness equations is verified by a series of finite element(FE)models of T-stub substructures.The proposed component stiffness equations are an effective supplement to the component-based method.展开更多
In this paper a new ODE numerical integration method was successfully applied to solving nonlinear equations. The method is of same simplicity as fixed point iteration, but the efficiency has been significantly improv...In this paper a new ODE numerical integration method was successfully applied to solving nonlinear equations. The method is of same simplicity as fixed point iteration, but the efficiency has been significantly improved, so it is especially suitable for large scale systems. For Brown’s equations, an existing article reported that when the dimension of the equation N = 40, the subroutines they used could not give a solution, as compared with our method, we can easily solve this equation even when N = 100. Other two large equations have the dimension of N = 1000, all the existing available methods have great difficulties to handle them, however, our method proposed in this paper can deal with those tough equations without any difficulties. The sigularity and choosing initial values problems were also mentioned in this paper.展开更多
In this paper, a new one-step explicit method of fourth order is derived. The new method is proved to be A-stable and L-stable, and it gives exact results when applied to the test equation y’=λy with Re(λ)【0, Also...In this paper, a new one-step explicit method of fourth order is derived. The new method is proved to be A-stable and L-stable, and it gives exact results when applied to the test equation y’=λy with Re(λ)【0, Also several numerical examples are included.展开更多
An arc_length method is presented to solve the ordinary differential equations (ODEs) with certain types of singularity such as stiff property or discontinuity on continuum problem. By introducing one or two arc_lengt...An arc_length method is presented to solve the ordinary differential equations (ODEs) with certain types of singularity such as stiff property or discontinuity on continuum problem. By introducing one or two arc_length parameters as variables, the differential equations with singularity are transformed into non_singularity equations, which can be solved by usual methods. The method is also applicable for partial differential equations (PDEs), because they may be changed into systems of ODEs by discretization. Two examples are given to show the accuracy, efficiency and application.展开更多
The finite segment modelling for the flexible beam-formed structural elements is presented, in which the discretization views of the finite segment method and the difference from the finite element method are introduc...The finite segment modelling for the flexible beam-formed structural elements is presented, in which the discretization views of the finite segment method and the difference from the finite element method are introduced. In terms of the nodal model, the joint properties are described easily by the model of the finite segment method, and according to the element properties, the assumption of the small strain is only met in the finite segment method, i. e., the geometric nonlinear deformation of the flexible bodies is allowable. Consequently,the finite segment method is very suited to the flexible multibody structure. The finite segment model is used and the are differentiation is adopted for the differential beam segments. The stiffness equation is derived by the use of the principle of virtual work. The new modelling method shows its normalization, clear physical and geometric meanings and simple computational process.展开更多
The current work models a weak(soft) interface between two elastic materials as containing a periodic array of micro-crazes. The boundary conditions on the interfacial micro-crazes are formulated in terms of a system ...The current work models a weak(soft) interface between two elastic materials as containing a periodic array of micro-crazes. The boundary conditions on the interfacial micro-crazes are formulated in terms of a system of hypersingular integro-differential equations with unknown functions given by the displacement jumps across opposite faces of the micro-crazes. Once the displacement jumps are obtained by approximately solving the integro-differential equations, the effective stiffness of the micro-crazed interface can be readily computed. The effective stiffness is an important quantity needed for expressing the interfacial conditions in the spring-like macro-model of soft interfaces. Specific case studies are conducted to gain physical insights into how the effective stiffness of the interface may be influenced by the details of the interfacial micro-crazes.展开更多
A general procedure to capture the 'dynanmic Stiffness' is presented in this paper. The governing equations of motion are formulated for an arbitrary flexible body in large overall motion based on Kane's ...A general procedure to capture the 'dynanmic Stiffness' is presented in this paper. The governing equations of motion are formulated for an arbitrary flexible body in large overall motion based on Kane's equations . The linearization is performed peroperly by means of geometrically nonlinear straindisplacement relations and the nonlinear expression of angular velocity so that the 'dynamical stiffness' terms can be captured naturally in a general tcase. The concept and formulations of partial velocity and angular velocity arrays of Huston's method are extended to the flexible body and form the basis of the analysis. The validity and generality of the procedure presented in the paper are verified by numerical results of its application in both the beam and plate models.展开更多
基金supported by NSFC (10871078)863 Program of China (2009AA044501)+1 种基金an Open Research Grant of the State Key Laboratory for Nonlinear Mechanics of CASGraduates' Innovation Fund of HUST (HF-08-02-2011-011)
文摘A type of complex systems under both random influence and memory effects is considered. The systems are modeled by a class of nonlinear stochastic delay-integrodifferential equations. A delay-dependent stability criterion for such equations is derived under the condition that the time lags are small enough. Numerical simulations are presented to illustrate the theoretical result.
基金Inner Mongolia University 2020 undergraduate teaching reform research and construction project-NDJG2094。
文摘This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear neutral delay-integro-differential equations.We investigate the dissipativity properties of-algebraically stable multistep Runge-Kutta methods with constrained grid.The finite-dimensional and infinite-dimensional dissipativity results of-algebraically stable multistep Runge-Kutta methods are obtained.
基金National Natural Science Foundation of China(No.11171352)
文摘A class of general modified split-step balanced methods proposed in the paper can be applied to solve stiff stochastic differential systems with m-dimensional multiplicative noise. Compared to some other already reported split-step balanced methods, the drift increment function of the methods can be taken from any chosen ane-step ordinary differential equations (ODEs) solver. The schemes is proved to be strong convergent with order one. For the mean-square stability analysis, the investigation is confined to two cases. Some numerical experiments are reported to testify the performance and the effectiveness of the methods.
文摘A backward differentiation formula (BDF) has been shown to be an effective way to solve a system of ordinary differential equations (ODEs) that have some degree of stiffness. However, sometimes, due to high-frequency variations in the external time series of boundary conditions, a small time-step is required to solve the ODE system throughout the entire simulation period, which can lead to a high computational cost, slower response, and need for more memory resources. One possible strategy to overcome this problem is to dynamically adjust the time-step with respect to the system’s stiffness. Therefore, small time-steps can be applied when needed, and larger time-steps can be used when allowable. This paper presents a new algorithm for adjusting the dynamic time-step based on a BDF discretization method. The parameters used to dynamically adjust the size of the time-step can be optimally specified to result in a minimum computation time and reasonable accuracy for a particular case of ODEs. The proposed algorithm was applied to solve the system of ODEs obtained from an activated sludge model (ASM) for biological wastewater treatment processes. The algorithm was tested for various solver parameters, and the optimum set of three adjustable parameters that represented minimum computation time was identified. In addition, the accuracy of the algorithm was evaluated for various sets of solver parameters.
基金supported by the NSF(10926158) of ChinaDoctoral Fund(20090061120038) of Ministry of Education of ChinaBasic Scientific Research Foundation(200903287) of Jilin University
文摘In this paper we discuss diagonally implicit and semi-implicit methods based on the three-stage stiffly accurate Runge-Kutta methods for solving Stratonovich stochastic differential equations(SDEs).Two methods,a three-stage stiffly accurate semi-implicit(SASI3) method and a three-stage stiffly accurate diagonally implicit (SADI3) method,are constructed in this paper.In particular,the truncated random variable is used in the implicit method.The stability properties and numerical results show the effectiveness of these methods in the pathwise approximation of stiff SDEs.
基金The Science-Technology Foundation for Young Scientist of Fujian Province (No.2005J053)
文摘A nonlinear numerical integration method, based on forward and backward Euler integration methods, is proposed for solving the stiff dynamic equations of a flexible multibody system, which are transformed from the second order to the first order by adopting state variables. This method is of A0 stability and infinity stability. The numerical solutions violating the constraint equations are corrected by Blajer's modification approach. Simulation results of a slider-crank mechanism by the proposed method are in good agreement with ones from other literature.
文摘Numerical algorithms for stiff stochastic differential equations are developed using lin-ear approximations of the fast diffusion processes,under the assumption of decoupling between fast and slow processes.Three numerical schemes are proposed,all of which are based on the linearized formulation albeit with different degrees of approximation.The schemes are of comparable complexity to the classical explicit Euler-Maruyama scheme but can achieve better accuracy at larger time steps in stiff systems.Convergence analysis is conducted for one of the schemes,that shows it to have a strong convergence order of 1/2 and a weak convergence order of 1.Approximations arriving at the other two schemes are discussed.Numerical experiments are carried out to examine the convergence of the schemes proposed on model problems.
文摘The behavior of beams with variable stiffness subjected to the action of variable loadings (impulse or harmonic) is analyzed in this paper using the successive approximation method. This successive approximation method is a technique for numerical integration of partial differential equations involving both the space and time, with well-known initial conditions on time and boundary conditions on the space. This technique, although having been applied to beams with constant stiffness, is new for the case of beams with variable stiffness, and it aims to use a quadratic parabola (in time) to approximate the solutions of the differential equations of dynamics. The spatial part is studied using the successive approximation method of the partial differential equations obtained, in order to transform them into a system of time-dependent ordinary differential equations. Thus, the integration algorithm using this technique is established and applied to examples of beams with variable stiffness, under variable loading, and with the different cases of supports chosen in the literature. We have thus calculated the cases of beams with constant or variable rigidity with articulated or embedded supports, subjected to the action of an instantaneous impulse and harmonic loads distributed over its entire length. In order to justify the robustness of the successive approximation method considered in this work, an example of an articulated beam with constant stiffness subjected to a distributed harmonic load was calculated analytically, and the results obtained compared to those found numerically for various steps (spatial h and temporal τ ¯ ) of calculus, and the difference between the values obtained by the two methods was small. For example for ( h=1/8 , τ ¯ =1/ 64 ), the difference between these values is 17%.
基金This study was supported by the National Natural Science Foundation of China(Grant Nos.51978500 and 51538002).
文摘The derivation and validation of analytical equations for predicting the tensile initial stiffness of threadfixed one-side bolts(TOBs),connected to enclosed rectangular hollow section(RHS)columns,is presented in this paper.Two unknown stiffness components are considered:the TOBs connection and the enclosed RHS face.First,the trapezoidal thread of TOB,as an equivalent cantilevered beam subjected to uniformly distributed loads,is analyzed to determine the associated deformations.Based on the findings,the thread-shank serial-parallel stiffness model of TOB connection is proposed.For analysis of the tensile stiffness of the enclosed RHS face due to two bolt forces,the four sidewalls are treated as rotation constraints,thus reducing the problem to a two-dimensional plate analysis.According to the load superposition method,the deflection of the face plate is resolved into three components under various boundary and load conditions.Referring to the plate deflection theory of Timoshenko,the analytical solutions for the three deflections are derived in terms of the variables of bolt spacing,RHS thickness,height to width ratio,etc.Finally,the validity of the above stiffness equations is verified by a series of finite element(FE)models of T-stub substructures.The proposed component stiffness equations are an effective supplement to the component-based method.
文摘In this paper a new ODE numerical integration method was successfully applied to solving nonlinear equations. The method is of same simplicity as fixed point iteration, but the efficiency has been significantly improved, so it is especially suitable for large scale systems. For Brown’s equations, an existing article reported that when the dimension of the equation N = 40, the subroutines they used could not give a solution, as compared with our method, we can easily solve this equation even when N = 100. Other two large equations have the dimension of N = 1000, all the existing available methods have great difficulties to handle them, however, our method proposed in this paper can deal with those tough equations without any difficulties. The sigularity and choosing initial values problems were also mentioned in this paper.
文摘In this paper, a new one-step explicit method of fourth order is derived. The new method is proved to be A-stable and L-stable, and it gives exact results when applied to the test equation y’=λy with Re(λ)【0, Also several numerical examples are included.
文摘An arc_length method is presented to solve the ordinary differential equations (ODEs) with certain types of singularity such as stiff property or discontinuity on continuum problem. By introducing one or two arc_length parameters as variables, the differential equations with singularity are transformed into non_singularity equations, which can be solved by usual methods. The method is also applicable for partial differential equations (PDEs), because they may be changed into systems of ODEs by discretization. Two examples are given to show the accuracy, efficiency and application.
基金National Natural Science Foundation of China!59575026
文摘The finite segment modelling for the flexible beam-formed structural elements is presented, in which the discretization views of the finite segment method and the difference from the finite element method are introduced. In terms of the nodal model, the joint properties are described easily by the model of the finite segment method, and according to the element properties, the assumption of the small strain is only met in the finite segment method, i. e., the geometric nonlinear deformation of the flexible bodies is allowable. Consequently,the finite segment method is very suited to the flexible multibody structure. The finite segment model is used and the are differentiation is adopted for the differential beam segments. The stiffness equation is derived by the use of the principle of virtual work. The new modelling method shows its normalization, clear physical and geometric meanings and simple computational process.
文摘The current work models a weak(soft) interface between two elastic materials as containing a periodic array of micro-crazes. The boundary conditions on the interfacial micro-crazes are formulated in terms of a system of hypersingular integro-differential equations with unknown functions given by the displacement jumps across opposite faces of the micro-crazes. Once the displacement jumps are obtained by approximately solving the integro-differential equations, the effective stiffness of the micro-crazed interface can be readily computed. The effective stiffness is an important quantity needed for expressing the interfacial conditions in the spring-like macro-model of soft interfaces. Specific case studies are conducted to gain physical insights into how the effective stiffness of the interface may be influenced by the details of the interfacial micro-crazes.
文摘A general procedure to capture the 'dynanmic Stiffness' is presented in this paper. The governing equations of motion are formulated for an arbitrary flexible body in large overall motion based on Kane's equations . The linearization is performed peroperly by means of geometrically nonlinear straindisplacement relations and the nonlinear expression of angular velocity so that the 'dynamical stiffness' terms can be captured naturally in a general tcase. The concept and formulations of partial velocity and angular velocity arrays of Huston's method are extended to the flexible body and form the basis of the analysis. The validity and generality of the procedure presented in the paper are verified by numerical results of its application in both the beam and plate models.