期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
THE DYNAMIC STIFFNESS MATRIX OF THE FINITE ANNULAR PLATE ELEMENT
1
作者 张益松 高德平 吴晓萍 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第12期1151-1162,共12页
The dynamic deformation of harmonic vibration is used as the shape functions of the finite annular plate element, and sonic integration difficulties related to the Bessel's functions are solved in this paper. Then... The dynamic deformation of harmonic vibration is used as the shape functions of the finite annular plate element, and sonic integration difficulties related to the Bessel's functions are solved in this paper. Then the dynamic stiffness matrix of the finite annular plate element is established in closed form and checked by the direct stiffness method. The paper has given wide convcrage for decomposing the dynamic matrix into the power series of frequency square. By utilizing the axial symmetry of annular elements, the modes with different numbers of nodal diameters at s separately treated. Thus some terse and complete results are obtained as the foundation of structural characteristic analysis and dynamic response compulation. 展开更多
关键词 DE THE DYNAMIC stiffness matrix OF THE FINITE ANNULAR PLATE ELEMENT PING
下载PDF
THE INCREMENT STIFFNESS MATRIX AND TOTAL QUANTUM STIFFNESS IN NONLINEAR ANALYSES
2
作者 李龙元 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1989年第8期723-726,共4页
In this paper, the expressions of both increment stiffness matrix and total quantum stiffness matrix in nonlinear analyses are derived in detail, and their relationship is discussed in mathematical meaningThe results ... In this paper, the expressions of both increment stiffness matrix and total quantum stiffness matrix in nonlinear analyses are derived in detail, and their relationship is discussed in mathematical meaningThe results given in our paper will be of great importance to the analyses of nonlinear numerical and nonlinear stability in finite element methods. 展开更多
关键词 THE INCREMENT stiffness matrix AND TOTAL QUANTUM stiffness IN NONLINEAR ANALYSES
下载PDF
New Formula for Geometric Stiffness Matrix Calculation
3
作者 I. Němec M. Trcala +1 位作者 I. Ševčík H. Štekbauer 《Journal of Applied Mathematics and Physics》 2016年第4期733-748,共16页
The standard formula for geometric stiffness matrix calculation, which is convenient for most engineering applications, is seen to be unsatisfactory for large strains because of poor accuracy, low convergence rate, an... The standard formula for geometric stiffness matrix calculation, which is convenient for most engineering applications, is seen to be unsatisfactory for large strains because of poor accuracy, low convergence rate, and stability. For very large compressions, the tangent stiffness in the direction of the compression can even become negative, which can be regarded as physical nonsense. So in many cases rubber materials exposed to great compression cannot be analyzed, or the analysis could lead to very poor convergence. Problems with the standard geometric stiffness matrix can even occur with a small strain in the case of plastic yielding, which eventuates even greater practical problems. The authors demonstrate that amore precisional approach would not lead to such strange and theoretically unjustified results. An improved formula that would eliminate the disadvantages mentioned above and leads to higher convergence rate and more robust computations is suggested in this paper. The new formula can be derived from the principle of virtual work using a modified Green-Lagrange strain tensor, or from equilibrium conditions where in the choice of a specific strain measure is not needed for the geometric stiffness derivation (which can also be used for derivation of geometric stiffness of a rigid truss member). The new formula has been verified in practice with many calculations and implemented in the RFEM and SCIA Engineer programs. The advantages of the new formula in comparison with the standard formula are shown using several examples. 展开更多
关键词 Geometric stiffness Stress stiffness Initial Stress stiffness Tangent stiffness matrix Finite Element Method Principle of Virtual Work Strain Measure
下载PDF
A numerical framework for underground structures in layered ground under inclined P-SV waves using stiffness matrix and domain reduction methods
4
作者 Yusheng YANG Haitao YU +2 位作者 Yong YUAN Dechun LU Qiangbing HUANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2023年第1期10-24,共15页
A numerical framework was proposed for the seismic analysis of underground structures in layered ground under inclined P-SV waves.The free-field responses are first obtained using the stiffness matrix method based on ... A numerical framework was proposed for the seismic analysis of underground structures in layered ground under inclined P-SV waves.The free-field responses are first obtained using the stiffness matrix method based on plane-wave assumptions.Then,the domain reduction method was employed to reproduce the wavefield in the numerical model of the soil–structure system.The proposed numerical framework was verified by providing comparisons with analytical solutions for cases involving free-field responses of homogeneous ground,layered ground,and pressure-dependent heterogeneous ground,as well as for an example of a soil–structure interaction simulation.Compared with the viscous and viscous-spring boundary methods adopted in previous studies,the proposed framework exhibits the advantage of incorporating oblique incident waves in a nonlinear heterogeneous ground.Numerical results show that SV-waves are more destructive to underground structures than P-waves,and the responses of underground structures are significantly affected by the incident angles. 展开更多
关键词 underground structures seismic response stiffness matrix method domain reduction method P-SV waves
原文传递
Stiffness Matrix Derivation of Space Beam Element at Elevated Temperature
5
作者 杨秀英 赵金城 龚景海 《Journal of Shanghai Jiaotong university(Science)》 EI 2010年第4期492-497,共6页
<Abstract>Element stiffness equation is very important in structural analysis,and directly influences the accuracy of the results.At present,derivation method of element stiffness equation is relatively mature u... <Abstract>Element stiffness equation is very important in structural analysis,and directly influences the accuracy of the results.At present,derivation method of element stiffness equation is relatively mature under ambient temperature,and the elastic phrase of material stress-strain curve is generally adopted as physical equation in derivation.However,the material stress-strain relationship is very complicated at elevated temperature,and its form is not unique,which brings great diffculty to the derivation of element stiffness equation.Referring to the derivation method of element stiffness equation at ambient temperature,by using the continuous function of stress-strain-temperature at elevated temperature,and based on the principle of virtual work,the stiffness equation of space beam element and the formulas of stiffness matrix are derived in this paper,which provide basis for finite element analysis on structures at elevated temperature. 展开更多
关键词 elevated temperature space beam element element stiffness matrix principle of virtual work
原文传递
PRECONDITIONING OF THE STIFFNESS MATRIX OF LOCAL REFINED TRIANGULATION
6
作者 Zhang Sheng (Computing Center, Academia Sinica, Beijing, China) 《Journal of Computational Mathematics》 SCIE CSCD 1994年第2期113-117,共5页
A preconditioning method for the finite element stiffness matrix is given in this paper. The triangulation is refined in a subregion; the preconditioning process is composed of resolution of two regular subproblems; t... A preconditioning method for the finite element stiffness matrix is given in this paper. The triangulation is refined in a subregion; the preconditioning process is composed of resolution of two regular subproblems; the condition number of the preconditioned matrix is 0(1 + log H/h), where H and h are mesh sizes of the unrefined and local refined triangulations respectively. 展开更多
关键词 PRECONDITIONING OF THE stiffness matrix OF LOCAL REFINED TRIANGULATION
原文传递
THE GENERATION OF NON-LINEAR STIFFNESS MATRIX OF TRIANGLE ELEMENT WHENCONSIDERING BOTH THE BENDING AND IN-PLANEME MBRANE FORCES
7
作者 张建海 李永年 陈大鹏 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1994年第5期425-434,共10页
Using Stricklin Melhod ̄[5],we have this paper has derived the formulas for the ge-neration of non-linear element stiffness matrix of a triangle element when considering both the bending and the in-plane membrane forc... Using Stricklin Melhod ̄[5],we have this paper has derived the formulas for the ge-neration of non-linear element stiffness matrix of a triangle element when considering both the bending and the in-plane membrane forces. A computer programme for the calculation of large deflection and inner forces of shallow shells is designed on theseformulas. The central deflection curve computed by this programme is compared with other pertaining results. 展开更多
关键词 triangular element non-linear stiffness matrix
下载PDF
Matrix Stiffness-Induced Transcriptome Alterations and Regulatory Mechanisms Revealed by RNA-Seq in Endothelial Cells
8
作者 Chao Zhang Xiaomei Han +1 位作者 Jin Xu Yue Zhou 《Journal of Biomaterials and Nanobiotechnology》 CAS 2022年第3期61-79,共19页
Changes in vascular stiffness are associated with the development and progression of many diseases, especially in cardiovascular disease. However, the effect of vascular stiffness on the endothelial cells (ECs) is not... Changes in vascular stiffness are associated with the development and progression of many diseases, especially in cardiovascular disease. However, the effect of vascular stiffness on the endothelial cells (ECs) is not fully understood. Therefore, this study aims to determine the gene expression changes of ECs cultured on the matrices with different stiffness (1 kPa and 40 kPa, respectively) by RNA-seq, thereby broadening the knowledge between mechanics and biology. We obtained 1775 differentially expressed genes (DEGs) by RNA-seq, with 450 up-regulated and 1325 down-regulated DEGs in ECs cultured on soft matrix (1 kPa) compared to those cultured on stiff matrix (40 kPa). After that, we performed a series of functional enrichment analyses based on DEGs and found that DEGs were enriched in many signaling pathways like adhesion junction. Furthermore, transcription factor (TF) target gene prediction analysis and protein-protein interaction (PPI) analysis were also conducted. We found that mechanotransduction signaling related TFs such as BRD4 are involved in. And in the PPI analysis, some genes encoding extracellular matrix proteins such as fibronectin 1 (FN1) were identified as the hub genes. In order to confirm the RNA-seq results, we performed real-time qPCR analysis on the genes of interest, including FN1, collagen α2 (IV) chain, matrix metalloproteinase-14 and integrin α5, and found that the expression levels of all these genes were down-regulated on soft matrix, suggesting that soft matrix caused by pathological conditions may directly attenuate vascular barrier function. This study offers the insights about the effects of physical stimulation on cells, paving a way for vascular tissue engineering, regenerative medicine, disease modeling and therapies. 展开更多
关键词 Endothelial Cells matrix stiffness RNA-SEQ Cell-Cell Junctions Extracellular matrix
下载PDF
An Application of the Modified Shear Lag Model to Study the Influence of Thermal Residual Stresses on the Stiffness and Yield Strength of Short Fiber Reinforced Metal Matrix Composites 被引量:1
9
作者 Zhonghao JIANG and Jianshe LIAN(Dept. of Materials Science and Engineering, Jilin University of Technology, Changchun 130025, China)Shangli DONG and Dezhuang YANG(School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1999年第3期213-221,共9页
The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and ... The modified shear lag model proposed recently was applied to calculate thermal residual stresses and subsequent stress distributions under tensile and compressive loadings. The expressions for the elastic moduli and the yield strengths under tensile and compressive loadings were derived which take account of thermal residual stresses. The asymmetries in the elastic modulus and the yield strength were interpreted using the derived expressions and the obtained results of the stress calculations. The model predictions have exhibited good agreements with the experimental results and also with the other theoretical predictions 展开更多
关键词 ab Figure An Application of the Modified Shear Lag Model to Study the Influence of Thermal Residual Stresses on the stiffness and Yield Strength of Short Fiber Reinforced Metal matrix Composites
下载PDF
UV-induced senescence of human dermal fibroblasts restrained by low-stiffness matrix by inhibiting NF-κB activation
10
作者 Xuefeng Yao Huaqiong Li +1 位作者 Liping Chen Lay Poh Tan 《Engineered Regeneration》 2022年第4期365-373,共9页
As a hallmark of skin aging,senescent human dermal fibroblasts(HDFs)are known to lose the ability to divide.However,they can still interact with their cellular environment and the surrounding matrix.As the skin ages,t... As a hallmark of skin aging,senescent human dermal fibroblasts(HDFs)are known to lose the ability to divide.However,they can still interact with their cellular environment and the surrounding matrix.As the skin ages,the progressive slowing down of HDFs function decreases the skin’s structural integrity,which is more serious than if there is the dermal collagen matrix eroded.This leads to matters of the unbalanced barrier under the skin,skin fragility,inadequate wound healing,as well as other cosmetic issues.It is also well documented that skin aging comes with significant stiffness increases.Therefore,understanding the interactions between HDFs and the surrounding microenvironments during senescence may provide insights into skin aging.Here we aim to inves-tigate matrix stiffness’effect on HDF senescence and elucidate possible mechanisms that make HDFs senescent.In our experiments,HDFs were cultivated on Polydimethylsiloxane(PDMS)with various stiffnesses and exposed to UV light to trigger senescence.Results show that HDFs are significantly affected by senescence when cultured on a matrix with stiffness.However,the cells are not significantly affected when cultured on a low stiffness matrix.The following characterization revealed cells cultured on stiffsubstrates under UV exposure had stimu-lated the nucleus factor kappa-B(NF-κB)activation.In contrast,cells on a matrix of softness only displayed low activation of NF-κB.NF-κB activity suppression with ammonium pyrrolidine dithiocarbamate(PDTC)decreases UV-induced HDFs senescence on stiffsubstrates.Taken together,we demonstrated that soft matrix defends HDFs against ultraviolet-induced senescence by inhibiting the activation of NF-κB. 展开更多
关键词 Human dermal fibroblasts matrix stiffness SENESCENCE NF-ΚB
原文传递
A New Modification to Shear Lag Model as Applied to Stiffness and Yield Strength of Short Fiber Reinforced Metal Matrix Composites
11
作者 Jiang, ZH Lian, JS +1 位作者 Yang, DZ Dong, SL 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1998年第6期516-522,共7页
A new modification for the shear lag model is given and the expressions for the stiffness and yield Strength of short fiber metal matri×composite are derived. These expressions are then compared with our experime... A new modification for the shear lag model is given and the expressions for the stiffness and yield Strength of short fiber metal matri×composite are derived. These expressions are then compared with our experimental data in a SiCw/Al-Li T6 composite and the published experimental data on different SiCw/Al T6 composites and also compared with the previous shear lag models and the other theoretical models. 展开更多
关键词 SiC A New Modification to Shear Lag Model as Applied to stiffness and Yield Strength of Short Fiber Reinforced Metal matrix Composites
全文增补中
Method of reverberation ray matrix for static analysis of planar framed structures composed of anisotropic Timoshenko beam members 被引量:2
12
作者 Jiao ZHANG Guohua NIE 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2015年第2期233-242,共10页
Based on the method of reverberation ray matrix(MRRM), a reverberation matrix for planar framed structures composed of anisotropic Timoshenko(T) beam members containing completely hinged joints is developed for st... Based on the method of reverberation ray matrix(MRRM), a reverberation matrix for planar framed structures composed of anisotropic Timoshenko(T) beam members containing completely hinged joints is developed for static analysis of such structures.In the MRRM for dynamic analysis, amplitudes of arriving and departing waves for joints are chosen as unknown quantities. However, for the present case of static analysis, displacements and rotational angles at the ends of each beam member are directly considered as unknown quantities. The expressions for stiffness matrices for anisotropic beam members are developed. A corresponding reverberation matrix is derived analytically for exact and unified determination on the displacements and internal forces at both ends of each member and arbitrary cross sectional locations in the structure. Numerical examples are given and compared with the finite element method(FEM) results to validate the present model. The characteristic parameter analysis is performed to demonstrate accuracy of the present model with the T beam theory in contrast with errors in the usual model based on the Euler-Bernoulli(EB) beam theory. The resulting reverberation matrix can be used for exact calculation of anisotropic framed structures as well as for parameter analysis of geometrical and material properties of the framed structures. 展开更多
关键词 planar framed structure ANISOTROPIC Timenshenko(T) beam stiffness matrix method of reverberation ray matrix(MRRM) static analysis
下载PDF
Topology Optimization of Stiffener Layout Design for Box Type Load-Bearing Component under Thermo-Mechanical Coupling
13
作者 Zhaohui Yang Tianhua Xiong +1 位作者 Fei Du Baotong Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第5期1701-1718,共18页
The structure optimization design under thermo-mechanical coupling is a difficult problem in the topology optimization field.An adaptive growth algorithm has become a more effective approach for structural topology op... The structure optimization design under thermo-mechanical coupling is a difficult problem in the topology optimization field.An adaptive growth algorithm has become a more effective approach for structural topology optimization.This paper proposed a topology optimization method by an adaptive growth algorithm for the stiffener layout design of box type load-bearing components under thermo-mechanical coupling.Based on the stiffness diffusion theory,both the load stiffness matrix and the heat conduction stiffness matrix of the stiffener are spread at the same time to make sure the stiffener grows freely and obtain an optimal stiffener layout design.Meanwhile,the objectives of optimization are the minimization of strain energy and thermal compliance of the whole structure,and thermo-mechanical coupling is considered.Numerical studies for square shells clearly show the effectiveness of the proposed method for stiffener layout optimization under thermo-mechanical coupling.Finally,the method is applied to optimize the stiffener layout of box type load-bearing component of themachining center.The optimization results show that both the structural deformation and temperature of the load-bearing component with the growth stiffener layout,which are optimized by the adaptive growth algorithm,are less than the stiffener layout of shape‘#’stiffener layout.It provides a new solution approach for stiffener layout optimization design of box type load-bearing components under thermo-mechanical coupling. 展开更多
关键词 THERMO-MECHANICAL topology optimization adaptive growth algorithm load stiffness matrix heat conduction stiffness matrix
下载PDF
ANALYSIS OF STRESS CONCENTRATIONS IN UNIDIRECTIONAL COMPOSITES TAKING INTO ACCOUNT THE TENSILE LOAD IN THE MATRIX 被引量:3
14
作者 Ling, L Zeng, QD 《Acta Mechanica Solida Sinica》 SCIE EI 1998年第4期318-328,共11页
A modified shear-lag model accounting for the effect of the tensile stiffness of the ma, trix is proposed for solving the stress redistribution due to the failure of fibers and matrix in unidirectionally fibre-reinfor... A modified shear-lag model accounting for the effect of the tensile stiffness of the ma, trix is proposed for solving the stress redistribution due to the failure of fibers and matrix in unidirectionally fibre-reinforced composites. The advantages of this model are simple, reasonable and accurate by comparison with the other similar modified shear-lag models. It can be further extended to study the stress redistribution with interfacial damage between fibres and matrix This paper quantitatively dis cusses the influence of the tensile stiffness ratio of matrix to fibre and of the fibre volume fraction on the stress concentration in the fibres and ma trix adjacent to cut fibres and matrix, and suggests that the influence of the matrix stiffness on the stress concentration can be neglected when the matrix stiffness is low, such as polymer matrix composites, and the fibre volume fraction is high. For other cases such as ceramic and metal matrix composites, the tensile load of the matrix cannot be neglected in the shear-lag analysis. 展开更多
关键词 unidirectional composites stress concentration matrix stiffness shear-lag analysis
全文增补中
DIRECT MANIPULATION OF B-SPLINE SURFACES 被引量:8
15
作者 WangZhiguo ZhouLaishui WangXiaoping 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2005年第1期103-108,共6页
Engineering design and geometric modeling often require the ability to modifythe shape of parametric curves and surfaces so that their shape satisfy some given geometricconstraints, including point, normal vector, cur... Engineering design and geometric modeling often require the ability to modifythe shape of parametric curves and surfaces so that their shape satisfy some given geometricconstraints, including point, normal vector, curve and surface. Two approaches are presented todirectly manipulate the shape of B-spline surface. The former is based on the least-square, whereasthe latter is based on minimizing the bending energy of surface. For each method, since unified andexplicit formulae are derived to compute new control points of modified surface, these methods aresimple, fast and applicable for CAD systems. Algebraic technique is used to simplify the computationof B-spline composition and multiplication. Comparisons and examples are also given. 展开更多
关键词 NURBS Bending energy FAIRNESS Kronecker product stiffness matrix
下载PDF
GEOMETRICALLY NONLINEAR FINITE ELEMENT MODEL OF SPATIAL THIN-WALLED BEAMS WITH GENERAL OPEN CROSS SECTION 被引量:11
16
作者 Xiaofeng Wang Qingshan Yang 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第1期64-72,共9页
Based on the theory of Timoshenko and thin-walled beams, a new finite element model of spatial thin-walled beams with general open cross sections is presented in the paper, in which several factors are included such a... Based on the theory of Timoshenko and thin-walled beams, a new finite element model of spatial thin-walled beams with general open cross sections is presented in the paper, in which several factors are included such as lateral shear deformation, warp generated by nonuni- form torsion and second-order shear stress, coupling of flexure and torsion, and large displacement with small strain. With an additional internal node in the element, the element stiffness matrix is deduced by incremental virtual work in updated Lagrangian (UL) formulation. Numerical examples demonstrate that the presented model well describes the geometrically nonlinear property of spatial thin-walled beams. 展开更多
关键词 spatial beams thin-walled structures geometrically nonlinear finite element stiffness matrix
下载PDF
Optimal Load Balancing Leveling Method for Multi-leg Flexible Platforms 被引量:5
17
作者 GANG Xianyue CHAI Shan 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2013年第5期900-908,共9页
The working platforms supported with multiple extensible legs must be leveled before they come into operation.Although the supporting stiffness and reliability of the platform are improved with the increasing number o... The working platforms supported with multiple extensible legs must be leveled before they come into operation.Although the supporting stiffness and reliability of the platform are improved with the increasing number of the supporting legs,the increased overdetermination of the multi-leg platform systems leads to leveling coupling problem among legs and virtual leg problem in which some of the supporting legs bear zero or quasi zero loads.These problems make it quite complex and time consuming to level such a multi-leg platform.Based on rigid body kinematics,an approximate equation is formulated to rapidly calculate the leg extension for leveling a rigid platform,then a proportional speed control strategy is proposed to reduce the unexpected platform distortion and leveling coupling between supporting legs.Taking both the load coupling between supporting legs and the elastic flexibility of the working platform into consideration,an optimal balancing legs’ loads(OBLL) model is firstly put forward to deal with the traditional virtual leg problem.By taking advantage of the concept of supporting stiffness matrix,a coupling extension method(CEM) is developed to solve this OBLL problem for multi-leg flexible platform.At the end,with the concept of supporting stiffness matrix and static transmissibility matrix,an optimal load balancing leveling method is proposed to achieve geometric leveling and legs’ loads balancing simultaneously.Three numerical examples are given out to illustrate the performance of proposed methods.This paper proposes a method which can effectively quantify all of the legs’ extension at the same time,achieve geometric leveling and legs’ loads balancing simultaneously.By using the proposed methods,the stability,precision and efficiency of auto-leveling control process can be improved. 展开更多
关键词 multi-leg platform overdetermined problem optimal balancing legs' loads supporting stiffness matrix static transmissibility matrix
下载PDF
Adaptive Predictive Inverse Control of Offshore Jacket Platform Based on Rough Neural Network 被引量:2
18
作者 崔洪宇 赵德有 周平 《China Ocean Engineering》 SCIE EI 2009年第2期185-198,共14页
The offshore jacket platform is a complex and time-varying nonlinear system, which can be excited of harmful vibration by external loads. It is difficult to obtain an ideal control performance for passive control meth... The offshore jacket platform is a complex and time-varying nonlinear system, which can be excited of harmful vibration by external loads. It is difficult to obtain an ideal control performance for passive control methods or traditional active control methods based on accurate mathematic model. In this paper, an adaptive inverse control method is proposed on the basis of novel rough neural networks (RNN) to control the harmful vibration of the offshore jacket platform, and the offshore jacket platform model is established by dynamic stiffness matrix (DSM) method. Benefited from the nonlinear processing ability of the neural networks and data interpretation ability of the rough set theory, RNN is utilized to identify the predictive inverse model of the offshore jacket platform system. Then the identified model is used as the adaptive predictive inverse controller to control the harmful vibration caused by wave and wind loads, and to deal with the delay problem caused by signal transmission in the control process. The numerical results show that the constructed novel RNN has advantages such as clear structure, fast training speed and strong error-tolerance ability, and the proposed method based on RNN can effectively control the harmful vibration of the offshore jacket platform. 展开更多
关键词 offshore jacket platform rough set neural network dynamic stiffness matrix adaptive predictive irwerse control wave load wind load
下载PDF
An elastic-plastic analysis of short-leg shear wall structures during earthquakes 被引量:2
19
作者 Ding Jianguo Zhu Ying 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2012年第4期525-540,共16页
Short-leg shear wall structures are a new form of building structure that combine the merits of both frame and shear wall structures. Its architectural features, structure bearing and engineering cost are reasonable. ... Short-leg shear wall structures are a new form of building structure that combine the merits of both frame and shear wall structures. Its architectural features, structure bearing and engineering cost are reasonable. To analyze the elastic-plastic response of a short-leg shear wall structure during an earthquake, this study modified the multiple-vertical-rod element model of the shear wall, considered the shear lag effect and proposed a multiple-vertical-rod element coupling beam model with a new local stiffness domain. Based on the principle of minimum potential energy and the variational principle, the stiffness matrixes of a short-leg shear wall and a coupling beam are derived in this study. Furthermore, the bending shear correlation for the analysis of different parameters to describe the structure, such as the beam height to span ratio, short-leg shear wall height to thickness ratio, and steel ratio are introduced. The results show that the height to span ratio directly affects the structural integrity; and the short-leg shear wall height to thickness ratio should be limited to a range of approximately 6.0 to 7.0. The design of short-leg shear walls should be in accordance with the "strong wall and weak beam" principle. 展开更多
关键词 short-leg shear wall multiple-vertical-rod element model shear lag effect bending shear correlationcoefficient coupling beam stiffness matrix elastic-plastic analysis
下载PDF
Propagation behavior of elastic waves in one-dimensional piezoelectric/piezomagnetic phononic crystal with line defects 被引量:2
20
作者 Y.Pang F.-Y.Jiao J.-X.Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2014年第5期703-713,共11页
Using a stiffness matrix method, we in- vestigate the propagation behaviors of elastic waves in one-dimensional (1D) piezoelectric/piezomagnetic (PE/PM) phononic crystals (PCs) with line defects by calculating e... Using a stiffness matrix method, we in- vestigate the propagation behaviors of elastic waves in one-dimensional (1D) piezoelectric/piezomagnetic (PE/PM) phononic crystals (PCs) with line defects by calculating energy reflection/transmittion coefficients of quasi-pressure and quasi-shear waves. Line defects are created by the re- placement of PE or PM constituent layer. The defect modes existing in the first gap are considered and the influences on defect modes of the material properties and volume fraction of the defect layers, the type of incident waves, the location of defect layer and the number of structural layers are discussed in detail. Numerical results indicate that defect modes are the most obvious when the defect layers are inserted in the middle of the perfect PCs; the types of incidence wave and material properties of the defect layers have important effects on the numbers, the location of frequencies and the peaks of defect modes, and the defect modes are strongly de- pendent on volume fraction of the defect layers. We hope this paper will be found useful for the design of PE/PM acoustic filters or acoustic transducer with PCs structures. 展开更多
关键词 1D phononic crystal Piezoelectric/piezomag- netic. Elastic wave Line defect stiffness matrix method
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部