Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force...Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.展开更多
In this paper,a new system of semi active structural control with active variable stiffness and damping (AVSD) is suggested.This new system amplifies the structural displacement to dissipate more energy,and in turn,ef...In this paper,a new system of semi active structural control with active variable stiffness and damping (AVSD) is suggested.This new system amplifies the structural displacement to dissipate more energy,and in turn,effectively reduces the structural response in the case of relatively small story drifts,which occur during earthquakes.A predictive instantaneous optimal control algorithm is established for a SDOF structure equipped with an AVSD system Comparative shaking table tests of a 1/4 scale single story structural model with a full scale control device have been conducted.From the experimental and analytical results,it is shown that when compared to structures without control or with the active variable stiffness control alone, the suggested system exhibits higher efficiency in controlling the structural response,requires less energy input,operates with higher reliability,and can be manufactured at a lower cost and used in a wider range of engineering applications.展开更多
Water lubricated guide bearings for hydro turbines and pumps are conventionally designed with multiple axial grooves to provide effectively cooling and flushing away abrasives.Due to the variety of groove configuratio...Water lubricated guide bearings for hydro turbines and pumps are conventionally designed with multiple axial grooves to provide effectively cooling and flushing away abrasives.Due to the variety of groove configuration in terms of number and size,a predication of their performance is difficult.This paper deals with an analytical procedure to investigate groove effect on load capacity,stiffness and damping for this type of bearing where it is considered as an assembly of many inclined slide bearings.The result can be applied to bearings made of hard materials combined with low bearing pressure.展开更多
Existing studies primarily focus on stiffness and damping under full-film lubrication or dry contact conditions.However,most lubricated transmission components operate in the mixed lubrication region,indicating that b...Existing studies primarily focus on stiffness and damping under full-film lubrication or dry contact conditions.However,most lubricated transmission components operate in the mixed lubrication region,indicating that both the asperity contact and film lubrication exist on the rubbing surfaces.Herein,a novel method is proposed to evaluate the time-varying contact stiffness and damping of spiral bevel gears under transient mixed lubrication conditions.This method is sufficiently robust for addressing any mixed lubrication state regardless of the severity of the asperity contact.Based on this method,the transient mixed contact stiffness and damping of spiral bevel gears are investigated systematically.The results show a significant difference between the transient mixed contact stiffness and damping and the results from Hertz(dry)contact.In addition,the roughness significantly changes the contact stiffness and damping,indicating the importance of film lubrication and asperity contact.The transient mixed contact stiffness and damping change significantly along the meshing path from an engaging-in to an engaging-out point,and both of them are affected by the applied torque and rotational speed.In addition,the middle contact path is recommended because of its comprehensive high stiffness and damping,which maintained the stability of spiral bevel gear transmission.展开更多
The jetting and cementing bucket platform (JCBP) is a new type offshore oil-drilling platform. This paper aims to establish an analysis method for calculating the dynamic response of this platform. Based on the theo...The jetting and cementing bucket platform (JCBP) is a new type offshore oil-drilling platform. This paper aims to establish an analysis method for calculating the dynamic response of this platform. Based on the theory of elastic half space, the dynamic stiffness and damping of the platform' s foundation were obtained and attached to the end of the platform' s main jackets as a boundary condition. Then using finite element method (FEM), the dynamic response of the platform due to wave and current loading was calculated. Furthermore, the whole platform' s finite element model was established and the dynamic response of the platform was calculated. The numerical results demonstrate that the present method by the usage of elastic half space theory and FEM is simple and it is reliable and efficient to calculate dynamic behavior of the platform in response to wave and current loading.展开更多
Many important vibration phenomena which simultaneously contain quadratic nonlinear stiffness and damping exist in the complicated vibrating systems under practical circumstances. In this paper, we established a 2-deg...Many important vibration phenomena which simultaneously contain quadratic nonlinear stiffness and damping exist in the complicated vibrating systems under practical circumstances. In this paper, we established a 2-degree-of-freedom (DOF) nonlinear vibration model for such a system, deduced the differential equations of motion which govern its dynamics, and worked out the solutions for the governing equations by the principle of superposition of nonlinear normal modes (NLNM) based on Shaw’s theory of invariant manifolds. We conducted numerical simulations with the established model, using superposition of nonlinear normal modes and direct numerical methods, respectively. The obtained results demonstrate the feasibility of the proposed method in that its calculated data varies in a similar tendency to that of the direct numerical solutions.展开更多
Although aerodynamic compliant foil bearings are successfully applied in a number of turbo-machineries,theoretical researches on the modeling,performance prediction of compliant foil bearings and the dynamic analysis ...Although aerodynamic compliant foil bearings are successfully applied in a number of turbo-machineries,theoretical researches on the modeling,performance prediction of compliant foil bearings and the dynamic analysis of the related rotor system seem still far behind the experimental investigation because of structural complexity of the foil bearings.A generalized solution of the elasto-aerodynamic lubrication is presented in this paper by introducing both static and dynamic deformations of foils and solving gas-lubricated Reynolds equations with deformation equations simultaneously.The solution can be used for the calculation of dynamic stiffness and damping,as well as the prediction of static performances of foil bearings.Systematical theories and methods are also presented for the purpose of the prediction of dynamic behavior of a rotor system equipped with foil bearings.展开更多
With rigorous dynamic performance of mechanical products,it is important to identify dynamic parameters exactly.In this paper,a response surface plotting method is proposed and it can be applied to identify the dynami...With rigorous dynamic performance of mechanical products,it is important to identify dynamic parameters exactly.In this paper,a response surface plotting method is proposed and it can be applied to identify the dynamic parameters of some nonlinear systems.The method is based on the principle of harmonic balance method(HBM).The nonlinear vibration system behaves linearly under the steady-state response amplitude,which presents the equivalent stiffness and damping coefficient.The response surface plot is over two-dimensional space,which utilizes excitation as the vertical axis and the frequency as the horizontal axis.It can be applied to observe the output vibration response data.The modal parameters are identified by the response surface plot as linearity for different excitation levels,and they are converted into equivalent stiffness and damping coefficient for each resonant response.Finally,the HBM with first-order expansion is utilized for identification of stiffness and damping coefficient of nonlinear systems.The classical nonlinear systems are applied in the numerical simulation as the example,which is used to verify its effectiveness and accuracy.An application of this technique for nonlinearity identification by experimental setup is also illustrated.展开更多
基金Supported by National Key Basic Research Program of China(973 Program,Grant No.2014CB046405)State Key Laboratory of Fluid Power and Mechatronic Systems(Zhejiang University)Open Fund Project(Grant No.GZKF-201502)Hebei Military and Civilian Industry Development Funds Projects of China(Grant No.2015B060)
文摘Each joint of hydraulic drive quadruped robot is driven by the hydraulic drive unit(HDU), and the contacting between the robot foot end and the ground is complex and variable, which increases the difficulty of force control inevitably. In the recent years, although many scholars researched some control methods such as disturbance rejection control, parameter self-adaptive control, impedance control and so on, to improve the force control performance of HDU, the robustness of the force control still needs improving. Therefore, how to simulate the complex and variable load characteristics of the environment structure and how to ensure HDU having excellent force control performance with the complex and variable load characteristics are key issues to be solved in this paper. The force control system mathematic model of HDU is established by the mechanism modeling method, and the theoretical models of a novel force control compensation method and a load characteristics simulation method under different environment structures are derived, considering the dynamic characteristics of the load stiffness and the load damping under different environment structures. Then, simulation effects of the variable load stiffness and load damping under the step and sinusoidal load force are analyzed experimentally on the HDU force control performance test platform, which provides the foundation for the force control compensation experiment research. In addition, the optimized PID control parameters are designed to make the HDU have better force control performance with suitable load stiffness and load damping, under which the force control compensation method is introduced, and the robustness of the force control system with several constant load characteristics and the variable load characteristics respectively are comparatively analyzed by experiment. The research results indicate that if the load characteristics are known, the force control compensation method presented in this paper has positive compensation effects on the load characteristics variation, i.e., this method decreases the effects of the load characteristics variation on the force control performance and enhances the force control system robustness with the constant PID parameters, thereby, the online PID parameters tuning control method which is complex needs not be adopted. All the above research provides theoretical and experimental foundation for the force control method of the quadruped robot joints with high robustness.
文摘In this paper,a new system of semi active structural control with active variable stiffness and damping (AVSD) is suggested.This new system amplifies the structural displacement to dissipate more energy,and in turn,effectively reduces the structural response in the case of relatively small story drifts,which occur during earthquakes.A predictive instantaneous optimal control algorithm is established for a SDOF structure equipped with an AVSD system Comparative shaking table tests of a 1/4 scale single story structural model with a full scale control device have been conducted.From the experimental and analytical results,it is shown that when compared to structures without control or with the active variable stiffness control alone, the suggested system exhibits higher efficiency in controlling the structural response,requires less energy input,operates with higher reliability,and can be manufactured at a lower cost and used in a wider range of engineering applications.
文摘Water lubricated guide bearings for hydro turbines and pumps are conventionally designed with multiple axial grooves to provide effectively cooling and flushing away abrasives.Due to the variety of groove configuration in terms of number and size,a predication of their performance is difficult.This paper deals with an analytical procedure to investigate groove effect on load capacity,stiffness and damping for this type of bearing where it is considered as an assembly of many inclined slide bearings.The result can be applied to bearings made of hard materials combined with low bearing pressure.
基金This research was supported by the National Natural Science Foundation of China(NSFC,No.51875369)by the Chongqing Key Industry General Key Technology Innovation Special Major R&D Projects(No.cstc2017zdcy-zdzxX0001)Wei Pu would also like to thank the Fundamental Research Funds for the Central Universities(No.YJ201752)。
文摘Existing studies primarily focus on stiffness and damping under full-film lubrication or dry contact conditions.However,most lubricated transmission components operate in the mixed lubrication region,indicating that both the asperity contact and film lubrication exist on the rubbing surfaces.Herein,a novel method is proposed to evaluate the time-varying contact stiffness and damping of spiral bevel gears under transient mixed lubrication conditions.This method is sufficiently robust for addressing any mixed lubrication state regardless of the severity of the asperity contact.Based on this method,the transient mixed contact stiffness and damping of spiral bevel gears are investigated systematically.The results show a significant difference between the transient mixed contact stiffness and damping and the results from Hertz(dry)contact.In addition,the roughness significantly changes the contact stiffness and damping,indicating the importance of film lubrication and asperity contact.The transient mixed contact stiffness and damping change significantly along the meshing path from an engaging-in to an engaging-out point,and both of them are affected by the applied torque and rotational speed.In addition,the middle contact path is recommended because of its comprehensive high stiffness and damping,which maintained the stability of spiral bevel gear transmission.
文摘The jetting and cementing bucket platform (JCBP) is a new type offshore oil-drilling platform. This paper aims to establish an analysis method for calculating the dynamic response of this platform. Based on the theory of elastic half space, the dynamic stiffness and damping of the platform' s foundation were obtained and attached to the end of the platform' s main jackets as a boundary condition. Then using finite element method (FEM), the dynamic response of the platform due to wave and current loading was calculated. Furthermore, the whole platform' s finite element model was established and the dynamic response of the platform was calculated. The numerical results demonstrate that the present method by the usage of elastic half space theory and FEM is simple and it is reliable and efficient to calculate dynamic behavior of the platform in response to wave and current loading.
基金Funded by the National Science Foundation of China (No. 50075029).
文摘Many important vibration phenomena which simultaneously contain quadratic nonlinear stiffness and damping exist in the complicated vibrating systems under practical circumstances. In this paper, we established a 2-degree-of-freedom (DOF) nonlinear vibration model for such a system, deduced the differential equations of motion which govern its dynamics, and worked out the solutions for the governing equations by the principle of superposition of nonlinear normal modes (NLNM) based on Shaw’s theory of invariant manifolds. We conducted numerical simulations with the established model, using superposition of nonlinear normal modes and direct numerical methods, respectively. The obtained results demonstrate the feasibility of the proposed method in that its calculated data varies in a similar tendency to that of the direct numerical solutions.
基金This work was supported by the National Natural Science Foundation of China(Grant Nos.50275116 and 50475088)the National High-Tech Research and Development Program of China(Grant No.2002AA503020).
文摘Although aerodynamic compliant foil bearings are successfully applied in a number of turbo-machineries,theoretical researches on the modeling,performance prediction of compliant foil bearings and the dynamic analysis of the related rotor system seem still far behind the experimental investigation because of structural complexity of the foil bearings.A generalized solution of the elasto-aerodynamic lubrication is presented in this paper by introducing both static and dynamic deformations of foils and solving gas-lubricated Reynolds equations with deformation equations simultaneously.The solution can be used for the calculation of dynamic stiffness and damping,as well as the prediction of static performances of foil bearings.Systematical theories and methods are also presented for the purpose of the prediction of dynamic behavior of a rotor system equipped with foil bearings.
文摘With rigorous dynamic performance of mechanical products,it is important to identify dynamic parameters exactly.In this paper,a response surface plotting method is proposed and it can be applied to identify the dynamic parameters of some nonlinear systems.The method is based on the principle of harmonic balance method(HBM).The nonlinear vibration system behaves linearly under the steady-state response amplitude,which presents the equivalent stiffness and damping coefficient.The response surface plot is over two-dimensional space,which utilizes excitation as the vertical axis and the frequency as the horizontal axis.It can be applied to observe the output vibration response data.The modal parameters are identified by the response surface plot as linearity for different excitation levels,and they are converted into equivalent stiffness and damping coefficient for each resonant response.Finally,the HBM with first-order expansion is utilized for identification of stiffness and damping coefficient of nonlinear systems.The classical nonlinear systems are applied in the numerical simulation as the example,which is used to verify its effectiveness and accuracy.An application of this technique for nonlinearity identification by experimental setup is also illustrated.