期刊文献+
共找到34,282篇文章
< 1 2 250 >
每页显示 20 50 100
Working toward an integrated plasticity/network framework for repetitive transcranial magnetic stimulation to inform tailored treatments 被引量:1
1
作者 Jessica Moretti Jennifer Rodger 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1423-1424,共2页
Non-invasive brain stimulation techniques(NIBS),including repetitive transcranial magnetic stimulation(rTMS) and transcranial electric stim ulation(tES),are increasingly being adopted clinically for treatment of neuro... Non-invasive brain stimulation techniques(NIBS),including repetitive transcranial magnetic stimulation(rTMS) and transcranial electric stim ulation(tES),are increasingly being adopted clinically for treatment of neuropsychiatric and neurological disorders,albeit with varying success.The rationale behind the use of NIBS has historically been that stim ulation techniques modulate neuronal activity in the targeted region and consequently induce plasticity which can lead to therapeutic outcomes. 展开更多
关键词 stimulation TRANSCRANIAL treatment
下载PDF
Clinical Trial Demonstrates Efficacy of Transcranial Direct Current Stimulation (tDCS) in Improving Pain Management from Post-Laminectomy Syndrome
2
作者 Marilia Capuço Oliveira Fernanda Menezes de Faria +3 位作者 Gerardo Maria de Araújo Filho Ana Carolina Gonçalves Olmos Demosthenes Santana Silva Junior Camila Souza Alves Cosmo 《Pain Studies and Treatment》 2023年第4期27-42,共16页
Chronic pain, a multidimensional experience affecting individuals’ sensory, cognitive, and emotional aspects, significantly impacts their quality of life. Post-laminectomy syndrome, a condition characterized by persi... Chronic pain, a multidimensional experience affecting individuals’ sensory, cognitive, and emotional aspects, significantly impacts their quality of life. Post-laminectomy syndrome, a condition characterized by persistent back pain following spinal surgery, often leads to disability and increased healthcare utilization. Methods: This randomized, controlled, blind clinical trial aimed to investigate the efficacy of Transcranial Direct Current Stimulation (tDCS) in managing pain from post-laminectomy syndrome in patients. Twenty-four participants were assigned to three groups: sham stimulation, active stimulation over primary motor cortex (M1), or stimulation over dorsolateral prefrontal cortex (DLPFC). Stimulation was administered for five consecutive days, 20 minutes per session, using a current of 1.5 mA through 25 cm<sup>2</sup> electrodes. Pain intensity was assessed using Visual Analog Scale (VAS) before, during, and after intervention. Results: An ANOVA model demonstrates significant reduction in pain intensity compared to baseline in VAS, (F(7, 285) = 12.292;p 0.001;Power = 1.000;η2p = 0.534), in tDCS applied to M1, after five days of intervention. After stimulation, a significant improvement was observed in WHOQoL-Bref Quality of life item 1 (p = 0.04), considering statistical significant difference p 0.05. Correlation between the variables: quality of life, depression, anxiety and pain also demonstrates reduction in depression and anxiety according to Beck’s Depression and Anxiety Inventories (BDI and BAI), p 0.05. This effect was not observed in DLPFC stimulation group. Patients who believed they received active stimulation, in sham group, demonstrated potential for effective blinding. Conclusion: The tDCS applied to primary motor cortex effectively improved pain management and psychiatry symptoms in post-laminectomy syndrome patients. The technique’s low cost, ease of use, and high tolerability make it a promising adjuvant therapy for chronic pain conditions like post-laminectomy syndrome. 展开更多
关键词 Non-Invasive Neuromodulation Transcranial Direct Current stimulation Post-Laminectomy Syndrome Chronic Pain
下载PDF
Contribution of glial cells to the neuroprotective effects triggered by repetitive magnetic stimulation:a systematic review
3
作者 Susana A.Ferreira Nuno Pinto +2 位作者 Inês Serrenho Maria Vaz Pato Graça Baltazar 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期116-123,共8页
Repetitive transcranial magnetic stimulation has been increasingly studied in different neurological diseases,and although most studies focus on its effects on neuronal cells,the contribution of nonneuronal cells to t... Repetitive transcranial magnetic stimulation has been increasingly studied in different neurological diseases,and although most studies focus on its effects on neuronal cells,the contribution of nonneuronal cells to the improvement trigge red by repetitive transcranial magnetic stimulation in these diseases has been increasingly suggested.To systematically review the effects of repetitive magnetic stimulation on non-neuronal cells two online databases.Web of Science and PubMed were searched fo r the effects of high-frequency-repetitive transcranial magnetic stimulation,low-frequencyrepetitive transcranial magnetic stimulation,intermittent theta-bu rst stimulation,continuous thetaburst stimulation,or repetitive magnetic stimulation on non-neuronal cells in models of disease and in unlesioned animals or cells.A total of 52 studies were included.The protocol more frequently used was high-frequency-repetitive magnetic stimulation,and in models of disease,most studies report that high-frequency-repetitive magnetic stimulation led to a decrease in astrocyte and mic roglial reactivity,a decrease in the release of pro-inflammatory cyto kines,and an increase of oligodendrocyte proliferation.The trend towards decreased microglial and astrocyte reactivity as well as increased oligodendrocyte proliferation occurred with intermittent theta-burst stimulation and continuous theta-burst stimulation.Few papers analyzed the low-frequency-repetitive transcranial magnetic stimulation protocol,and the parameters evaluated were restricted to the study of astrocyte reactivity and release of pro-inflammatory cytokines,repo rting the absence of effects on these paramete rs.In what concerns the use of magnetic stimulation in unlesioned animals or cells,most articles on all four types of stimulation reported a lack of effects.It is also important to point out that the studies were developed mostly in male rodents,not evaluating possible diffe rential effects of repetitive transcranial magnetic stimulation between sexes.This systematic review supports that thro ugh modulation of glial cells repetitive magnetic stimulation contributes to the neuroprotection or repair in various neurological disease models.Howeve r,it should be noted that there are still few articles focusing on the impact of repetitive magnetic stimulation on non-neuronal cells and most studies did not perform in-depth analyses of the effects,emphasizing the need for more studies in this field. 展开更多
关键词 ASTROCYTE GLIA high-frequency repetitive magnetic stimulation inflammation low-frequency repetitive magnetic stimulation MICROGLIA neurologic disorders OLIGODENDROCYTE repetitive magnetic stimulation theta-burst stimulation
下载PDF
Millimetric devices for nerve stimulation:a promising path towards miniaturization
4
作者 Ryan M.Dorrian Anna V.Leonard Antonio Lauto 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1702-1706,共5页
Nerve stimulation is a rapidly developing field,demonstrating positive outcomes across several conditions.Despite potential benefits,current nerve stimulation devices are large,complicated,and are powered via implante... Nerve stimulation is a rapidly developing field,demonstrating positive outcomes across several conditions.Despite potential benefits,current nerve stimulation devices are large,complicated,and are powered via implanted pulse generators.These facto rs necessitate invasive surgical implantation and limit potential applications.Reducing nerve stimulation devices to millimetric sizes would make these interventions less invasive and facilitate broader therapeutic applications.However,device miniaturization presents a serious engineering challenge.This review presents significant advancements from several groups that have overcome this challenge and developed millimetricsized nerve stimulation devices.These are based on antennas,mini-coils,magneto-electric and optoelectronic materials,or receive ultrasound power.We highlight key design elements,findings from pilot studies,and present several considerations for future applications of these devices. 展开更多
关键词 biomedical engineering deep brain stimulation electrical engineering electrical stimulation NEUROMODULATION peripheral nerve stimulation
下载PDF
Transcranial Direct Current Stimulation: Effects on Motor and Non-Motor Symptoms of Parkinson’s Disease
5
作者 Fayda Protásio Carlos Alberto Bezerra Tomaz +3 位作者 Joaquim Brasil-Neto Pedro Brandão Nasser Allam Maria Clotilde Henriques Tavares 《Journal of Behavioral and Brain Science》 2024年第5期135-160,共26页
Introduction: In the last thirty years, brain neuromodulation techniques have been used as an alternative to pharmacological treatment of neurological disorders. Parkinson’s disease (PD) is a neurodegenerative disord... Introduction: In the last thirty years, brain neuromodulation techniques have been used as an alternative to pharmacological treatment of neurological disorders. Parkinson’s disease (PD) is a neurodegenerative disorder leading to bradykinesia, rest tremor, postural changes, and non-motor symptoms such as depression, anxiety, sleep disorders, pain, and cognitive decline that compromises executive functions (EFs), responsible for the orderly execution of behaviors and tasks of daily life and intentional and directed actions. To this date, a few studies with transcranial direct current stimulation (tDCS) have shown beneficial effects in PD patients concerning specific motor and non-motor symptoms, targeting the motor cortex and/or prefrontal regions. Objective: The main objective of this study was to evaluate the effects of left prefrontal tDCS across a broad spectrum of motor and non-motor symptoms of PD using established validated scales. Method: Single-blind randomized clinical trial with 18 volunteers with PD, aged between 45 and 80 years (66.1 ± 9.65), who met inclusion and exclusion criteria. Participants were submitted to assessments of motor and non-motor functions employing psychometric scales and tests to evaluate EFs and were randomly divided into two groups: control (sham stimulation) and experimental (active stimulation). All participants were involved in three separate tDCS sessions. The anode was positioned over the left dorsolateral prefrontal cortex and the cathode over the right supraorbital region, with a direct current intensity of 2 mA, lasting 20 minutes. At the end of the three sessions, all participants were reassessed. Results: Significant effects of tDCS on non-motor functions were observed for cognition (verbal fluency of actions, clock copy test, appointment by visual confrontation, and verbal memory with immediate free recall) and subjective assessment of sleep quality (overall restlessness and discomfort in the arms and legs at night, leg and arm cramps at night and distressing dreams). There was also an improvement in the rate of errors and successes for congruent and incongruent stimuli of the Stroop Test. The beneficial effects on motor function were decreased rigidity, improved gait, and greater agility in the finger-tapping test. Conclusion: Three tDCS sessions showed positive results for participants with PD, producing significant improvements in various motor and non-motor functions, including sleep quality, cognition, and EFs. Additionally, the present results indicate that tDCS neuromodulation of the left dorsolateral prefrontal cortex region is feasible, safe, and provides significant objective benefits for PD patients. 展开更多
关键词 Parkinson’s Disease NEUROMODULATION Transcranial Direct Current stimulationtdcs Movement Disorders MOOD SLEEP COGNITION
下载PDF
Vagus nerve stimulation in cerebral stroke:biological mechanisms,therapeutic modalities,clinical applications,and future directions
6
作者 Li Du Xuan He +3 位作者 Xiaoxing Xiong Xu Zhang Zhihong Jian Zhenxing Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1707-1717,共11页
Stroke is a major disorder of the central nervous system that poses a serious threat to human life and quality of life.Many stro ke victims are left with long-term neurological dysfunction,which adversely affects the ... Stroke is a major disorder of the central nervous system that poses a serious threat to human life and quality of life.Many stro ke victims are left with long-term neurological dysfunction,which adversely affects the well-being of the individual and the broader socioeconomic impact.Currently,poststroke brain dysfunction is a major and difficult area of treatment.Vagus nerve stimulation is a Food and Drug Administration-approved exploratory treatment option for autis m,refractory depression,epilepsy,and Alzheimer’s disease.It is expected to be a novel therapeutic technique for the treatment of stroke owing to its association with multiple mechanisms such as alte ring neurotransmitters and the plasticity of central neuro ns.In animal models of acute ischemic stroke,vagus nerve stimulation has been shown to reduce infarct size,reduce post-stroke neurological damage,and improve learning and memory capacity in rats with stroke by reducing the inflammatory response,regulating bloodbrain barrier permeability,and promoting angiogenesis and neurogenesis.At present,vagus nerve stimulation includes both invasive and non-invasive vagus nerve stimulation.Clinical studies have found that invasive vagus nerve stimulation combined with rehabilitation therapy is effective in im proving upper limb motor and cognitive abilities in stroke patients.Further clinical studies have shown that non-invasive vagus nerve stimulation,including ear/ce rvical vagus nerve stimulation,can stimulate vagal projections to the central nervous system similarly to invasive vagus nerve stimulation and can have the same effect.In this paper,we first describe the multiple effects of vagus nerve stimulation in stroke,and then discuss in depth its neuroprotective mechanisms in ischemic stroke.We go on to outline the res ults of the current major clinical applications of invasive and non-invasive vagus nerve stimulation.Finally,we provide a more comprehensive evaluation of the advantages and disadvantages of different types of vagus nerve stimulation in the treatment of cerebral ischemia and provide an outlook on the developmental trends.We believe that vagus nerve stimulation,as an effective treatment for stroke,will be widely used in clinical practice to promote the recovery of stroke patients and reduce the incidence of disability. 展开更多
关键词 cerebral stroke NEUROPLASTICITY non-invasive vagus nerve stimulation REHABILITATION vagus nerve stimulation
下载PDF
Optimal transcorneal electrical stimulation parameters for preserving photoreceptors in a mouse model of retinitis pigmentosa
7
作者 Sam Enayati Karen Chang +10 位作者 Anton Lennikov Menglu Yang Cherin Lee Ajay Ashok Farris Elzaridi Christina Yen Kasim Gunes Jia Xie Kin-Sang Cho Tor Paaske Utheim Dong Feng Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2543-2552,共10页
Retinitis pigmentosa is a hereditary retinal disease that affects rod and cone photoreceptors,leading to progressive photoreceptor loss.Previous research supports the beneficial effect of electrical stimulation on pho... Retinitis pigmentosa is a hereditary retinal disease that affects rod and cone photoreceptors,leading to progressive photoreceptor loss.Previous research supports the beneficial effect of electrical stimulation on photoreceptor survival.This study aims to identify the most effective electrical stimulation parameters and functional advantages of transcorneal electrical stimulation(tcES)in mice affected by inherited retinal degeneration.Additionally,the study seeked to analyze the electric field that reaches the retina in both eyes in mice and post-mortem humans.In this study,we recorded waveforms and voltages directed to the retina during transcorneal electrical stimulation in C57BL/6J mice using an intraocular needle probe with rectangular,sine,and ramp waveforms.To investigate the functional effects of electrical stimulation on photoreceptors,we used human retinal explant cultures and rhodopsin knockout(Rho^(-/-))mice,demonstrating progressive photoreceptor degeneration with age.Human retinal explants isolated from the donors’eyes were then subjected to electrical stimulation and cultured for 48 hours to simulate the neurodegenerative environment in vitro.Photoreceptor density was evaluated by rhodopsin immunolabeling.In vivo Rho^(-/-)mice were subjected to two 5-day series of daily transcorneal electrical stimulation using rectangular and ramp waveforms.Retinal function and visual perception of mice were evaluated by electroretinography and optomotor response(OMR),respectively.Immunolabeling was used to assess the morphological and biochemical changes of the photoreceptor and bipolar cells in mouse retinas.Oscilloscope recordings indicated effective delivery of rectangular,sine,and ramp waveforms to the retina by transcorneal electrical stimulation,of which the ramp waveform required the lowest voltage.Evaluation of the total conductive resistance of the post-mortem human compared to the mouse eyes indicated higher cornea-to-retina resistance in human eyes.The temperature recordings during and after electrical stimulation indicated no significant temperature change in vivo and only a subtle temperature increase in vitro(~0.5-1.5°C).Electrical stimulation increased photoreceptor survival in human retinal explant cultures,particularly at the ramp waveform.Transcorneal electrical stimulation(rectangular+ramp)waveforms significantly improved the survival and function of S and M-cones and enhanced visual acuity based on the optomotor response results.Histology and immunolabeling demonstrated increased photoreceptor survival,improved outer nuclear layer thickness,and increased bipolar cell sprouting in Rho^(-/-)mice.These results indicate that transcorneal electrical stimulation effectively delivers the electrical field to the retina,improves photoreceptor survival in both human and mouse retinas,and increases visual function in Rho^(-/-)mice.Combined rectangular and ramp waveform stimulation can promote photoreceptor survival in a minimally invasive fashion. 展开更多
关键词 bipolar cells electrical stimulation NEUROPROTECTION photoreceptor degeneration RETINA retinal explants retinitis pigmentosa transcorneal electrical stimulation WAVEFORM
下载PDF
Exploring the synergy of the eyebrain connection:neuromodulation approaches for neurodegenerative disorders through transcorneal electrical stimulation
8
作者 Antara Verma Stephen K.Agadagba Leanne Lai-Hang Chan 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2097-2098,共2页
The connection and interaction between the eye and the brain are crucial to understanding brain disorders(Marchesi et al.,2021).Both the eye and the brain have a limited regenerative capacity as there are few progenit... The connection and interaction between the eye and the brain are crucial to understanding brain disorders(Marchesi et al.,2021).Both the eye and the brain have a limited regenerative capacity as there are few progenitor cells,and nerve cells do not replicate.Hence,neurodegeneration implicates irreversible damage to the central nervous system,as observed in several neurodegenerative diseases(Marchesi et al.,2021). 展开更多
关键词 stimulation DEGENERATIVE
下载PDF
Comparisons of transcranial alternating current stimulation and repetitive transcranial magnetic stimulation treatment therapy for insomnia:a pilot study
9
作者 Ziqiang Shao Yongjian Guo +7 位作者 Lirong Yue Xiaoyang Liu Jiayi Liu Xumeng Zhao Xiaona Sheng Dahua Yu Yifei Zhu Kai Yuan 《General Psychiatry》 CSCD 2024年第1期163-167,共5页
To the editor:Insomnia disorder has a serious and widespread detrimental effect on humans with comorbidity with other mental or physical health problems.In recent years,noninvasive brain stimulation(NIBS)techniques,es... To the editor:Insomnia disorder has a serious and widespread detrimental effect on humans with comorbidity with other mental or physical health problems.In recent years,noninvasive brain stimulation(NIBS)techniques,especially transcranial magnetic stimulation(TMS)and transcranial electrical stimulation,have been increasingly used for the treatment of brain diseases,including insomnia disorder. 展开更多
关键词 stimulation TRANSCRANIAL INS
下载PDF
Effect of novel accelerated intermittent theta burst stimulation on suicidal ideation in adolescent patients with major depressive episode:a randomised clinical trial
10
作者 Dong Huang Shuming Zhong +3 位作者 Xiaodong Song Rongxu Zhang Shunkai Lai Yanbin Jia 《General Psychiatry》 CSCD 2024年第2期292-296,共5页
To the editor:Affective disorders,including major depressive disorder(MDD)and bipolar disorder,have emerged as the primary cause of adolescent suicide.Moreover,suicide mostly occurs in the major depressive episode(MDE... To the editor:Affective disorders,including major depressive disorder(MDD)and bipolar disorder,have emerged as the primary cause of adolescent suicide.Moreover,suicide mostly occurs in the major depressive episode(MDE)of affective disorders.Suicidal ideation(SI)has been identified as an immediate precursor to suicide,such that reducing its severity is conducive to suicide prevention in adolescents. 展开更多
关键词 PREVENTION EDITOR stimulation
下载PDF
Methodological considerations of priming repetitive transcranial magnetic stimulation protocols in clinical populations
11
作者 Jack Jiaqi Zhang Zhongfei Bai Kenneth N K Fong 《General Psychiatry》 CSCD 2024年第1期173-176,共4页
INTRODUCTION Repetitive transcranial magnetic stimulation(rTMS)is a neuroplasticity-enhancing technique that modifies brain responsiveness to various therapeutic modalities in clinical psychiatric and neurological app... INTRODUCTION Repetitive transcranial magnetic stimulation(rTMS)is a neuroplasticity-enhancing technique that modifies brain responsiveness to various therapeutic modalities in clinical psychiatric and neurological applications. Furthermore,its effect can be attributed to long-term potentiation(LTP)or longterm depression(LTD)-like neuroplasticity.However,responsiveness to rTMS is largely variable in healthy and pathological brains and is mediated by complex biological mechanisms.Metaplasticity refers to a higher-order plasticity mechanism in which the direction and magnitude of synaptic plasticity are modified by prior neuronal activity and is believed to be a significant factor leading to the response variability of rTMs. 展开更多
关键词 stimulation CLINICAL TRANSCRANIAL
下载PDF
Effects of a periodic intermittent theta burst stimulation in Alzheimer's disease
12
作者 Xingqi Wu Yibing Yan +12 位作者 Panpan Hu Lu Wang Yue Wu Pan Wu Zhi Geng Guixian Xiao Shanshan Zhou Gongjun Ji Bensheng Qiu Ling Wei Yanghua Tian Hesheng Liu Kai Wang 《General Psychiatry》 CSCD 2024年第1期53-63,共11页
Background Previous studies havedemonstrated that excitatory repetitive transcranial magnetic stimulation(rTMS)can improve the cognitive function of patients with Alzheimer's disease(AD).Intermittent theta burst s... Background Previous studies havedemonstrated that excitatory repetitive transcranial magnetic stimulation(rTMS)can improve the cognitive function of patients with Alzheimer's disease(AD).Intermittent theta burst stimulation(iTBS)is a novel excitatory rTMS protocol for brain activity stimulation with the ability to induce long-term potentiation-like plasticity and represents a promising treatment for AD.However,the long-term effects of iTBS on cognitive decline and brain structure in patients with AD areunknown.Aims We aimed to explore whether repeating accelerated iTBS every three months could slow down the cognitive decline in patients with AD.Methods In this randomised,assessor-blinded,controlled trial,iTBS was administered to the left dorsolateral prefrontal cortex(DLPFC)of 42 patients with AD for 14days every 13weeks.Measurements included the Montreal Cognitive Assessment(MoCA),a comprehensive neuropsychological battery,and the grey matter volume(GMV)of the hippocampus.Patients were evaluated at baseline and after follow-up.The longitudinal pipeline of the Computational Anatomy Toolbox for SPM was used to detect significant treatment-related changes over time.Results The iTBS group maintained MoCA scores relative to the control group(t=3.26,p=0.013)and reduced hippocampal atrophy,which was significantly correlated with global degeneration scale changes.The baseline Mini-Mental State Examination(MMSE)score,apolipoprotein E genotype and Clinical Dementia Rating were indicative of MoCA scores at follow-up.Moreover,the GMV of the left(t=0.08,p=0.996)and right(t=0.19,p=0.977)hippocampus were maintained in the active group but significantly declined in the control group(left:t=4.13,p<0.001;right:t=5.31,p<0.001).GMV change in the left(r=0.35,p=0.023)and right(r=0.36,p=0.021)hippocampus across the intervention positively correlated with MoCA changes;left hippocampal GMV change was negatively correlated with global degeneration scale(r=-0.32,p=0.041)changes.Conclusions DLPFC-iTBS maybe a feasible and easy-to-implement non-pharmacological intervention to slow down the progressive decline of overall cognition and quality of life in patients with AD,providing a new AD treatment option.Trial registration number NCT04754152. 展开更多
关键词 stimulation ALZHEIMER maintained
下载PDF
The Effect of Umami Stimulation on Salivary Secretion Rate and Duration
13
作者 Eri Sambuichi Rumi Nishimura +1 位作者 Shiho Morishita Shigeru Watanabe 《Health》 2024年第1期52-59,共8页
Purpose: Umami reportedly promotes salivation. We aimed to investigate the effects of taste stimuli on slow and fast salivary secretion in humans using umami, sweet, and sour stimuli. Methods: Eight healthy women part... Purpose: Umami reportedly promotes salivation. We aimed to investigate the effects of taste stimuli on slow and fast salivary secretion in humans using umami, sweet, and sour stimuli. Methods: Eight healthy women participated between 14:00 and 15:00, taking the circadian rhythm of salivary secretion into account. The types and concentrations of the taste solutions were glutamic acid (1.7 × 10<sup>−3</sup> M), inosinic acid (9.8 × 10<sup>−3</sup> M), and guanylic acid (9.8 × 10<sup>−3</sup> M) for umami stimulation, citric acid (6.5 × 10<sup>−3</sup> M) for acidity stimulation, and sucrose (1.6 × 10<sup>−2</sup> M) for sweetness stimulation. First, the unstimulated salivary flow rate was measured. Then, 3 ml of a flavor solution was dropped under the tongue using a syringe. The saliva was expelled into an aluminum cup every minute and weighed. The first minute’s value minus 3 ml flavor solution was the stimulated salivary secretion rate produced by each flavor. The time-to-return to the initial unstimulated salivary flow rate was the duration of the stimulated saliva secretion rate. Results: The mean unstimulated salivary flow rate across participants was 0.64 ± 0.25 ml/min (range: 0.23 - 1.03 ml/min). The highest amount of saliva was induced by citric acid. There were significant differences between citric acid and the other flavor solutions (p < 0.05 for glutamic acid, inosinic acid, and sucrose;p < 0.01 for guanylic acid). There were no significant differences in duration of salivation between the flavor solutions. When the participants were divided into slow (0.45 ± 0.16 ml/min) and fast groups (0.83 ± 0.15 ml/min) based on their median resting salivary secretion rate, there were no significant differences between the two groups in the amount of saliva secreted at 1 minute after stimulation and the duration of the salivary secretion rate. Conclusion: Umami stimulation was effective in slowing salivary secretion and sustaining salivary secretion after stimulation. 展开更多
关键词 Salivary Secretion Umami Flavor Oral Health Stimulated Salivary Secretion
下载PDF
High-frequency repetitive transcranial magnetic stimulation promotes neural stem cell proliferation after ischemic stroke
14
作者 Jing Luo Yuan Feng +4 位作者 Zhongqiu Hong Mingyu Yin Haiqing Zheng Liying Zhang Xiquan Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1772-1780,共9页
Prolife ration of neural stem cells is crucial for promoting neuronal regeneration and repairing cerebral infarction damage.Transcranial magnetic stimulation(TMS)has recently emerged as a tool for inducing endogenous ... Prolife ration of neural stem cells is crucial for promoting neuronal regeneration and repairing cerebral infarction damage.Transcranial magnetic stimulation(TMS)has recently emerged as a tool for inducing endogenous neural stem cell regeneration,but its underlying mechanisms remain unclea r In this study,we found that repetitive TMS effectively promotes the proliferation of oxygen-glucose deprived neural stem cells.Additionally,repetitive TMS reduced the volume of cerebral infa rction in a rat model of ischemic stro ke caused by middle cerebral artery occlusion,im p roved rat cognitive function,and promoted the proliferation of neural stem cells in the ischemic penumbra.RNA-sequencing found that repetitive TMS activated the Wnt signaling pathway in the ischemic penumbra of rats with cerebral ischemia.Furthermore,PCR analysis revealed that repetitive TMS promoted AKT phosphorylation,leading to an increase in mRNA levels of cell cycle-related proteins such as Cdk2 and Cdk4.This effect was also associated with activation of the glycogen synthase kinase 3β/β-catenin signaling pathway,which ultimately promotes the prolife ration of neural stem cells.Subsequently,we validated the effect of repetitive TMS on AKT phosphorylation.We found that repetitive TMS promoted Ca2+influx into neural stem cells by activating the P2 calcium channel/calmodulin pathway,thereby promoting AKT phosphorylation and activating the glycogen synthase kinase 3β/β-catenin pathway.These findings indicate that repetitive TMS can promote the proliferation of endogenous neural stem cells through a Ca2+influx-dependent phosphorylated AKT/glycogen synthase kinase 3β/β-catenin signaling pathway.This study has produced pioneering res ults on the intrinsic mechanism of repetitive TMS to promote neural function recove ry after ischemic stro ke.These results provide a stro ng scientific foundation for the clinical application of repetitive TMS.Moreover,repetitive TMS treatment may not only be an efficient and potential approach to support neurogenesis for further therapeutic applications,but also provide an effective platform for the expansion of neural stem cells. 展开更多
关键词 AKT/β-catenin signaling brain stimulation Ca2+influx cell proliferation ischemic stroke middle cerebral artery occlusion neural stem cells neurological rehabilitation repetitive transcranial magnetic stimulation
下载PDF
Laser speckle contrast imaging to predict the effect of temporary spinal cord stimulation in postherpetic neuralgia patients: A prospective observational study
15
作者 Xiang Huang Dacheng Tang +3 位作者 Pan Chen Lumiao Chen Xiaohong Li Xiaoping Wang 《Journal of Innovative Optical Health Sciences》 SCIE EI CSCD 2024年第1期69-75,共7页
Temporary spinal cord stimulation(tSCS)can effectively reduce the pain and severity of postherpetic neuralgia(PHN).However,there are no effective and objective methods for predicting the effects of tSCS on PHN.Laser s... Temporary spinal cord stimulation(tSCS)can effectively reduce the pain and severity of postherpetic neuralgia(PHN).However,there are no effective and objective methods for predicting the effects of tSCS on PHN.Laser speckle contrast imaging(LSCI)is frequently used in neurology to evaluate the effectiveness of treatment.To assess the accuracy of LSCI in predicting the impact of tSCS on PHN,14 adult patients receiving tSCS treatments for spinal nerve-innervated(C6-T2)PHN participated in this observational study.Visual analog scale(VAS)assessments and LSCI bloodflow images of the-ngers were recorded after the tSCS procedure.The results showed that the VAS scores of all patients decreased signi-cantly.Moreover,the bloodflow index(BFI)values were signi-cantly higher than they were before the procedure.Increased bloodflow and pain alleviation were positively correlated.The-ndings indicated that spinal nerve PHN(C6-T2)was signi-cantly reduced by tSCS.Pain alleviation by tSCS was positively correlated with increased bloodflow in the hand.The effect of tSCS on PHN may thus be predicted using an independent and consistent indicator such as LSCI. 展开更多
关键词 Laser speckle contrast imaging temporary spinal cord stimulation postherpetic neuralgia
下载PDF
Expectations and Level of Satisfaction of the Patient with Parkinson’s Disease Undergoing Deep Brain Stimulation Surgery at the National Institute of Neurology and Neurosurgery
16
作者 Paola Bazán-Rodríguez Eduardo Ichikawa-Escamilla +4 位作者 Etienne Reséndiz-Henríquez Carlos E. Martínez-Cortés Amin Cervantes-Arriaga Mayela Rodríguez-Violante Lisette Bazán-Rodríguez 《Advances in Parkinson's Disease》 CAS 2024年第1期1-7,共7页
Background: Deep brain stimulation (DBS) is an established treatment for patients with advanced Parkinson’s disease (PD). Reports show continued patient satisfaction after surgery despite not maintaining clinical imp... Background: Deep brain stimulation (DBS) is an established treatment for patients with advanced Parkinson’s disease (PD). Reports show continued patient satisfaction after surgery despite not maintaining clinical improvement as measured by evolution scales. Objectives: The present study sought to explore expectations and level of satisfaction in patients after DBS surgery with a semi-structured questionnaire and subsequent correlation with functional scales, Quality of Life (QoL), and motor and non-motor symptoms. Methods: We performed descriptive statistics to represent demographic data, Wilcoxon rank tests to determine significant differences, and Spearman correlation between the applied scales. Results: We evaluated 20 patients with a history of DBS surgery. 45% were female, with a mean age of 55.7 ± 14.15 years, a mean disease duration of 13.42 ± 8.3 years, and a mean time after surgery of 3.18 ± 1.86 years. Patients reported surgery meeting expectations in 85.5% and continued satisfaction in 92%. These two variables showed a significant correlation. Conclusions: This sample of patients remained satisfied after DBS surgery, although we found no differences in motor and non-motor clinimetric scales. Further studies are needed to confirm the importance of assessing quality of life in patients with DBS. 展开更多
关键词 Parkinson’s Disease Quality of Life Deep Brain stimulation Patient Satisfaction
下载PDF
Transcranial direct current stimulation efficacy in trigeminal neuralgia
17
作者 Theodoros Fasilis Stylianos Gatzonis +2 位作者 Panayiotis Patrikelis Stefanos Korfias Athanasia Alexoudi 《World Journal of Clinical Cases》 SCIE 2024年第5期1036-1038,共3页
Trigeminal neuralgia is a severe,disabling pain and its deafferentation remains a challenge for health providers.Transcranial direct current stimulation is a non-invasive stimulation technique which finds new utility ... Trigeminal neuralgia is a severe,disabling pain and its deafferentation remains a challenge for health providers.Transcranial direct current stimulation is a non-invasive stimulation technique which finds new utility in managing pain.There-fore,the introduction of alternative,non-invasive,safe,and effective methods should be considered in treating patients with trigeminal neuralgia unresponsive to conventional treatment. 展开更多
关键词 Trigeminal neuralgia Patient-controlled intravenous analgesia NEUROMODULATION Transcranial direct current stimulation
下载PDF
Impact of transcranial electrical stimulation on serum neurotrophic factors and language function in patients with speech disorders
18
作者 Li Sun Kai Xiao +1 位作者 Xiao-Yan Shen Shu Wang 《World Journal of Clinical Cases》 SCIE 2024年第10期1742-1749,共8页
BACKGROUND Speech disorders have a substantial impact on communication abilities and quality of life.Traditional treatments such as speech and psychological therapies frequently demonstrate limited effectiveness and p... BACKGROUND Speech disorders have a substantial impact on communication abilities and quality of life.Traditional treatments such as speech and psychological therapies frequently demonstrate limited effectiveness and patient compliance.Transcranial electrical stimulation(TES)has emerged as a promising non-invasive treatment to improve neurological functions.However,its effectiveness in enhancing language functions and serum neurofactor levels in individuals with speech disorders requires further investigation.AIM To investigate the impact of TES in conjunction with standard therapies on serum neurotrophic factor levels and language function in patients with speech disorders.METHODS In a controlled study spanning from March 2019 to November 2021,81 patients with speech disorders were divided into a control group(n=40)receiving standard speech stimulation and psychological intervention,and an observation group(n=41)receiving additional TES.The study assessed serum levels of ciliary neurotrophic factor(CNTF),glial cell-derived neurotrophic factor(GDNF),brainderived neurotrophic factor(BDNF),and nerve growth factor(NGF),as well as evaluations of motor function,language function,and development quotient scores.RESULTS After 3 wk of intervention,the observation group exhibited significantly higher serum levels of CNTF,GDNF,BDNF,and NGF compared to the control group.Moreover,improvements were noted in motor function,cognitive function,language skills,physical abilities,and overall development quotient scores.It is worth mentioning that the observation group also displayed superior perfor CONCLUSION This retrospective study concluded that TES combined with traditional speech and psychotherapy can effectively increase the levels of neurokines in the blood and enhance language function in patients with speech disorders.These results provide a promising avenue for integrating TES into standard treatment methods for speech disorders. 展开更多
关键词 Transcranial electrical stimulation Serum neurofactor levels Developmental level Language features
下载PDF
Effect of percutaneous electrical stimulation at the Baliao point on preventing postpartum urinary retention after labor analgesia
19
作者 Xiao-Qing Wang Li-Sha Guan 《World Journal of Clinical Cases》 SCIE 2024年第16期2758-2764,共7页
BACKGROUND Anesthetic drugs used in labor analgesia also paralyze the bladder muscle by blocking the sacral plexus,thereby affecting maternal postpartum spontaneous urination and increasing the risk of postpartum urin... BACKGROUND Anesthetic drugs used in labor analgesia also paralyze the bladder muscle by blocking the sacral plexus,thereby affecting maternal postpartum spontaneous urination and increasing the risk of postpartum urinary retention(PUR).AIM To analyze the effect of percutaneous electrical stimulation at the Baliao point combined with biofeedback therapy for PUR prevention.METHODS We selected 182 pregnant women who received labor analgesia in obstetrics between June 2022 and December 2023.They were divided into the combined therapy group(transcutaneous electrical stimulation of the Baliao point combined with biofeedback therapy)and the control group(biofeedback therapy alone).The first spontaneous urination time,first postpartum urine volume,bladder residual urine volume,postpartum hemorrhage volume,pre-urination waiting time,PUR incidence,adverse reactions,and the intervention’s clinical efficacy were compared between the two groups.RESULTS The first spontaneous urination time after delivery was more delayed(2.92±1.04 h vs 3.61±1.13 h,P<0.001),with fewer initial postpartum urine(163.54±24.67 mL vs 143.72±23.95 mL,P<0.001),more residual bladder urine(54.81±10.78 mL vs 65.25±13.52 mL,P<0.001),more postpartum bleeding(323.15±46.95 mL vs 348.12±45.03 mL,P=0.001),and longer waiting time for urination(0.94±0.31 min vs 1.29±0.42 min,P<0.001),in the control group than in the combined therapy group.The control group also had higher PUR incidence(4.65%vs 15.85%,P=0.016).Both groups had no adverse reactions,but the clinical total efficacy rate of the intervention was significantly higher in the combined therapy group than in the control group(95.35%vs 84.15%,P=0.016).CONCLUSION Percutaneous electrical stimulation of the Baliao point combined with biofeedback can significantly promote postpartum micturition of parturients with labor analgesia,thereby effectively preventing PUR occurrence. 展开更多
关键词 Transcutaneous electrical stimulation Baliao acupoint BIOFEEDBACK Pain relief during childbirth Postpartum uroschesis
下载PDF
Repetitive transcranial magnetic stimulation in Alzheimer’s disease:effects on neural and synaptic rehabilitation
20
作者 Yi Ji Chaoyi Yang +7 位作者 Xuerui Pang Yibing Yan Yue Wu Zhi Geng Wenjie Hu Panpan Hu Xingqi Wu Kai Wang 《Neural Regeneration Research》 SCIE CAS 2025年第2期326-342,共17页
Alzheimer’s disease is a neurodegenerative disease resulting from deficits in synaptic transmission and homeostasis.The Alzheimer’s disease brain tends to be hyperexcitable and hypersynchronized,thereby causing neur... Alzheimer’s disease is a neurodegenerative disease resulting from deficits in synaptic transmission and homeostasis.The Alzheimer’s disease brain tends to be hyperexcitable and hypersynchronized,thereby causing neurodegeneration and ultimately disrupting the operational abilities in daily life,leaving patients incapacitated.Repetitive transcranial magnetic stimulation is a cost-effective,neuro-modulatory technique used for multiple neurological conditions.Over the past two decades,it has been widely used to predict cognitive decline;identify pathophysiological markers;promote neuroplasticity;and assess brain excitability,plasticity,and connectivity.It has also been applied to patients with dementia,because it can yield facilitatory effects on cognition and promote brain recovery after a neurological insult.However,its therapeutic effectiveness at the molecular and synaptic levels has not been elucidated because of a limited number of studies.This study aimed to characterize the neurobiological changes following repetitive transcranial magnetic stimulation treatment,evaluate its effects on synaptic plasticity,and identify the associated mechanisms.This review essentially focuses on changes in the pathology,amyloidogenesis,and clearance pathways,given that amyloid deposition is a major hypothesis in the pathogenesis of Alzheimer’s disease.Apoptotic mechanisms associated with repetitive transcranial magnetic stimulation procedures and different pathways mediating gene transcription,which are closely related to the neural regeneration process,are also highlighted.Finally,we discuss the outcomes of animal studies in which neuroplasticity is modulated and assessed at the structural and functional levels by using repetitive transcranial magnetic stimulation,with the aim to highlight future directions for better clinical translations. 展开更多
关键词 Alzheimer’s disease amyloid deposition apoptotic mechanisms BIOMARKER neural regeneration NEURODEGENERATION repetitive transcranial magnetic stimulation synaptic plasticity
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部