期刊文献+
共找到169,450篇文章
< 1 2 250 >
每页显示 20 50 100
Biochemical and Physiological Responses of Arabidopsis thaliana Leaves to Moderate Mechanical Stimulation
1
作者 Iva Šutevski Klara Krmpotić +4 位作者 Sandra Vitko Nataša Bauer Eva Fancev Mario Cifrek Željka Vidaković-Cifrek 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第3期901-920,共20页
Mechanical stimulation of plants can be caused by various abiotic and biotic environmental factors.Apart from the negative consequences,it can also cause positive changes,such as acclimatization of plants to stress co... Mechanical stimulation of plants can be caused by various abiotic and biotic environmental factors.Apart from the negative consequences,it can also cause positive changes,such as acclimatization of plants to stress conditions.Therefore,it is necessary to study the physiological and biochemical mechanisms underlying the response of plants to mechanical stimulation.Our aim was to evaluate the response of model plant Arabidopsis thaliana to a moderate force of 5 N(newton)for 20 s,which could be compared with the pressure caused by animal movement and weather conditions such as heavy rain.Mechanically stimulated leaves were sampled 1 h after exposure and after a recovery period of 20 h.To study a possible systemic response,unstimulated leaves of treated plants were collected 20 h after exposure alongside the stimulated leaves from the same plants.The effect of stimulation was assessed by measuring oxidative stress parameters,antioxidant enzymes activity,total phenolics,and photosynthetic performance.Stimulated leaves showed increased lipid peroxidation 1 h after treatment and increased superoxide dismutase activity and phenolic oxidation rate after a 20-h recovery period.Considering photosynthetic performance after the 20-h recovery period,the effective quantum yield of the photosystem II was lower in the stimulated leaves,whereas photochemical quenching was lower in the unstimulated leaves of the treated plants.Nonphotochemical quenching was lower in the stimulated leaves 1 h after treatment.Our study suggested that plants sensed moderate force,but it did not induce pronounced change in metabolism or photosynthetic performance.Principal component analysis distinguished three groups–leaves of untreated plants,leaves analysed 1 h after stimulation,while stimulated and unstimulated leaves of treated plants analysed 20 h after treatment formed together the third group.Observed grouping of stimulated and unstimulated leaves of treated plants could indicate signal transduction from the stimulated to distant leaves,that is,a systemic response to a local application of mechanical stimuli. 展开更多
关键词 Arabidopsis thaliana mechanical stimulation oxidative stress antioxidant enzymes photosynthetic performance systemic response
下载PDF
Contribution of glial cells to the neuroprotective effects triggered by repetitive magnetic stimulation:a systematic review 被引量:1
2
作者 Susana A.Ferreira Nuno Pinto +2 位作者 Inês Serrenho Maria Vaz Pato Graça Baltazar 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第1期116-123,共8页
Repetitive transcranial magnetic stimulation has been increasingly studied in different neurological diseases,and although most studies focus on its effects on neuronal cells,the contribution of nonneuronal cells to t... Repetitive transcranial magnetic stimulation has been increasingly studied in different neurological diseases,and although most studies focus on its effects on neuronal cells,the contribution of nonneuronal cells to the improvement trigge red by repetitive transcranial magnetic stimulation in these diseases has been increasingly suggested.To systematically review the effects of repetitive magnetic stimulation on non-neuronal cells two online databases.Web of Science and PubMed were searched fo r the effects of high-frequency-repetitive transcranial magnetic stimulation,low-frequencyrepetitive transcranial magnetic stimulation,intermittent theta-bu rst stimulation,continuous thetaburst stimulation,or repetitive magnetic stimulation on non-neuronal cells in models of disease and in unlesioned animals or cells.A total of 52 studies were included.The protocol more frequently used was high-frequency-repetitive magnetic stimulation,and in models of disease,most studies report that high-frequency-repetitive magnetic stimulation led to a decrease in astrocyte and mic roglial reactivity,a decrease in the release of pro-inflammatory cyto kines,and an increase of oligodendrocyte proliferation.The trend towards decreased microglial and astrocyte reactivity as well as increased oligodendrocyte proliferation occurred with intermittent theta-burst stimulation and continuous theta-burst stimulation.Few papers analyzed the low-frequency-repetitive transcranial magnetic stimulation protocol,and the parameters evaluated were restricted to the study of astrocyte reactivity and release of pro-inflammatory cytokines,repo rting the absence of effects on these paramete rs.In what concerns the use of magnetic stimulation in unlesioned animals or cells,most articles on all four types of stimulation reported a lack of effects.It is also important to point out that the studies were developed mostly in male rodents,not evaluating possible diffe rential effects of repetitive transcranial magnetic stimulation between sexes.This systematic review supports that thro ugh modulation of glial cells repetitive magnetic stimulation contributes to the neuroprotection or repair in various neurological disease models.Howeve r,it should be noted that there are still few articles focusing on the impact of repetitive magnetic stimulation on non-neuronal cells and most studies did not perform in-depth analyses of the effects,emphasizing the need for more studies in this field. 展开更多
关键词 ASTROCYTE GLIA high-frequency repetitive magnetic stimulation inflammation low-frequency repetitive magnetic stimulation MICROGLIA neurologic disorders OLIGODENDROCYTE repetitive magnetic stimulation theta-burst stimulation
下载PDF
Millimetric devices for nerve stimulation:a promising path towards miniaturization
3
作者 Ryan M.Dorrian Anna V.Leonard Antonio Lauto 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1702-1706,共5页
Nerve stimulation is a rapidly developing field,demonstrating positive outcomes across several conditions.Despite potential benefits,current nerve stimulation devices are large,complicated,and are powered via implante... Nerve stimulation is a rapidly developing field,demonstrating positive outcomes across several conditions.Despite potential benefits,current nerve stimulation devices are large,complicated,and are powered via implanted pulse generators.These facto rs necessitate invasive surgical implantation and limit potential applications.Reducing nerve stimulation devices to millimetric sizes would make these interventions less invasive and facilitate broader therapeutic applications.However,device miniaturization presents a serious engineering challenge.This review presents significant advancements from several groups that have overcome this challenge and developed millimetricsized nerve stimulation devices.These are based on antennas,mini-coils,magneto-electric and optoelectronic materials,or receive ultrasound power.We highlight key design elements,findings from pilot studies,and present several considerations for future applications of these devices. 展开更多
关键词 biomedical engineering deep brain stimulation electrical engineering electrical stimulation NEUROMODULATION peripheral nerve stimulation
下载PDF
Morphology and Electrochemical Properties of Activated and Sputtered Iridium Oxide Films for Functional Electrostimulation
4
作者 Sandeep Negi Rajmohan Bhandari Florian Solzbacher 《Journal of Sensor Technology》 2012年第3期138-147,共10页
Iridium oxide (IrOx) has attracted much attention for neural interface applications due to its ability to transfer between ionic and electronic current and to resist corrosion. The physical, mechanical, chemical, elec... Iridium oxide (IrOx) has attracted much attention for neural interface applications due to its ability to transfer between ionic and electronic current and to resist corrosion. The physical, mechanical, chemical, electrical and optical properties of thin films depend on the method and parameters used to deposit the films. In this report, the surface morphology, impedance and charge capacity of activated iridium oxide film (AIROF) and sputtered iridium oxide film (SIROF) were investigated in vitro and compared. The Utah Electrode Array (UEA) having similar electrode area and shape were employed in this study. The electrode coated with AIROF and SIROF were characterized by scanning electron microcopy, cyclic voltammetry, electrochemical impedance spectroscopy and potential transient measurements to measure charge injection capacity (CIC). SIROF and AIROF selectively deposited on electrode tip had dendrite and granular microstructure, respectively. The CIC of unbiased SIROF and AIROF was found to be 2 and 1 mC/cm2, respectively, which is comparable to other published values. The average impedance, at a frequency of 1 kHz was ~65 and ~7 kΩ for the AIROF and SIROF, respectively. Low impedance and high CIC makes SIROF highly recommended stimulation and recording material. 展开更多
关键词 Neural PROSTHESES Electrode stimulation CHARGE Injection Capacity IRIDIUM Oxide
下载PDF
Vagus nerve stimulation in cerebral stroke:biological mechanisms,therapeutic modalities,clinical applications,and future directions 被引量:3
5
作者 Li Du Xuan He +3 位作者 Xiaoxing Xiong Xu Zhang Zhihong Jian Zhenxing Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1707-1717,共11页
Stroke is a major disorder of the central nervous system that poses a serious threat to human life and quality of life.Many stro ke victims are left with long-term neurological dysfunction,which adversely affects the ... Stroke is a major disorder of the central nervous system that poses a serious threat to human life and quality of life.Many stro ke victims are left with long-term neurological dysfunction,which adversely affects the well-being of the individual and the broader socioeconomic impact.Currently,poststroke brain dysfunction is a major and difficult area of treatment.Vagus nerve stimulation is a Food and Drug Administration-approved exploratory treatment option for autis m,refractory depression,epilepsy,and Alzheimer’s disease.It is expected to be a novel therapeutic technique for the treatment of stroke owing to its association with multiple mechanisms such as alte ring neurotransmitters and the plasticity of central neuro ns.In animal models of acute ischemic stroke,vagus nerve stimulation has been shown to reduce infarct size,reduce post-stroke neurological damage,and improve learning and memory capacity in rats with stroke by reducing the inflammatory response,regulating bloodbrain barrier permeability,and promoting angiogenesis and neurogenesis.At present,vagus nerve stimulation includes both invasive and non-invasive vagus nerve stimulation.Clinical studies have found that invasive vagus nerve stimulation combined with rehabilitation therapy is effective in im proving upper limb motor and cognitive abilities in stroke patients.Further clinical studies have shown that non-invasive vagus nerve stimulation,including ear/ce rvical vagus nerve stimulation,can stimulate vagal projections to the central nervous system similarly to invasive vagus nerve stimulation and can have the same effect.In this paper,we first describe the multiple effects of vagus nerve stimulation in stroke,and then discuss in depth its neuroprotective mechanisms in ischemic stroke.We go on to outline the res ults of the current major clinical applications of invasive and non-invasive vagus nerve stimulation.Finally,we provide a more comprehensive evaluation of the advantages and disadvantages of different types of vagus nerve stimulation in the treatment of cerebral ischemia and provide an outlook on the developmental trends.We believe that vagus nerve stimulation,as an effective treatment for stroke,will be widely used in clinical practice to promote the recovery of stroke patients and reduce the incidence of disability. 展开更多
关键词 cerebral stroke NEUROPLASTICITY non-invasive vagus nerve stimulation REHABILITATION vagus nerve stimulation
下载PDF
High-frequency repetitive transcranial magnetic stimulation promotes neural stem cell proliferation after ischemic stroke 被引量:3
6
作者 Jing Luo Yuan Feng +4 位作者 Zhongqiu Hong Mingyu Yin Haiqing Zheng Liying Zhang Xiquan Hu 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第8期1772-1780,共9页
Prolife ration of neural stem cells is crucial for promoting neuronal regeneration and repairing cerebral infarction damage.Transcranial magnetic stimulation(TMS)has recently emerged as a tool for inducing endogenous ... Prolife ration of neural stem cells is crucial for promoting neuronal regeneration and repairing cerebral infarction damage.Transcranial magnetic stimulation(TMS)has recently emerged as a tool for inducing endogenous neural stem cell regeneration,but its underlying mechanisms remain unclea r In this study,we found that repetitive TMS effectively promotes the proliferation of oxygen-glucose deprived neural stem cells.Additionally,repetitive TMS reduced the volume of cerebral infa rction in a rat model of ischemic stro ke caused by middle cerebral artery occlusion,im p roved rat cognitive function,and promoted the proliferation of neural stem cells in the ischemic penumbra.RNA-sequencing found that repetitive TMS activated the Wnt signaling pathway in the ischemic penumbra of rats with cerebral ischemia.Furthermore,PCR analysis revealed that repetitive TMS promoted AKT phosphorylation,leading to an increase in mRNA levels of cell cycle-related proteins such as Cdk2 and Cdk4.This effect was also associated with activation of the glycogen synthase kinase 3β/β-catenin signaling pathway,which ultimately promotes the prolife ration of neural stem cells.Subsequently,we validated the effect of repetitive TMS on AKT phosphorylation.We found that repetitive TMS promoted Ca2+influx into neural stem cells by activating the P2 calcium channel/calmodulin pathway,thereby promoting AKT phosphorylation and activating the glycogen synthase kinase 3β/β-catenin pathway.These findings indicate that repetitive TMS can promote the proliferation of endogenous neural stem cells through a Ca2+influx-dependent phosphorylated AKT/glycogen synthase kinase 3β/β-catenin signaling pathway.This study has produced pioneering res ults on the intrinsic mechanism of repetitive TMS to promote neural function recove ry after ischemic stro ke.These results provide a stro ng scientific foundation for the clinical application of repetitive TMS.Moreover,repetitive TMS treatment may not only be an efficient and potential approach to support neurogenesis for further therapeutic applications,but also provide an effective platform for the expansion of neural stem cells. 展开更多
关键词 AKT/β-catenin signaling brain stimulation Ca2+influx cell proliferation ischemic stroke middle cerebral artery occlusion neural stem cells neurological rehabilitation repetitive transcranial magnetic stimulation
下载PDF
Optimal transcorneal electrical stimulation parameters for preserving photoreceptors in a mouse model of retinitis pigmentosa
7
作者 Sam Enayati Karen Chang +10 位作者 Anton Lennikov Menglu Yang Cherin Lee Ajay Ashok Farris Elzaridi Christina Yen Kasim Gunes Jia Xie Kin-Sang Cho Tor Paaske Utheim Dong Feng Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2543-2552,共10页
Retinitis pigmentosa is a hereditary retinal disease that affects rod and cone photoreceptors,leading to progressive photoreceptor loss.Previous research supports the beneficial effect of electrical stimulation on pho... Retinitis pigmentosa is a hereditary retinal disease that affects rod and cone photoreceptors,leading to progressive photoreceptor loss.Previous research supports the beneficial effect of electrical stimulation on photoreceptor survival.This study aims to identify the most effective electrical stimulation parameters and functional advantages of transcorneal electrical stimulation(tcES)in mice affected by inherited retinal degeneration.Additionally,the study seeked to analyze the electric field that reaches the retina in both eyes in mice and post-mortem humans.In this study,we recorded waveforms and voltages directed to the retina during transcorneal electrical stimulation in C57BL/6J mice using an intraocular needle probe with rectangular,sine,and ramp waveforms.To investigate the functional effects of electrical stimulation on photoreceptors,we used human retinal explant cultures and rhodopsin knockout(Rho^(-/-))mice,demonstrating progressive photoreceptor degeneration with age.Human retinal explants isolated from the donors’eyes were then subjected to electrical stimulation and cultured for 48 hours to simulate the neurodegenerative environment in vitro.Photoreceptor density was evaluated by rhodopsin immunolabeling.In vivo Rho^(-/-)mice were subjected to two 5-day series of daily transcorneal electrical stimulation using rectangular and ramp waveforms.Retinal function and visual perception of mice were evaluated by electroretinography and optomotor response(OMR),respectively.Immunolabeling was used to assess the morphological and biochemical changes of the photoreceptor and bipolar cells in mouse retinas.Oscilloscope recordings indicated effective delivery of rectangular,sine,and ramp waveforms to the retina by transcorneal electrical stimulation,of which the ramp waveform required the lowest voltage.Evaluation of the total conductive resistance of the post-mortem human compared to the mouse eyes indicated higher cornea-to-retina resistance in human eyes.The temperature recordings during and after electrical stimulation indicated no significant temperature change in vivo and only a subtle temperature increase in vitro(~0.5-1.5°C).Electrical stimulation increased photoreceptor survival in human retinal explant cultures,particularly at the ramp waveform.Transcorneal electrical stimulation(rectangular+ramp)waveforms significantly improved the survival and function of S and M-cones and enhanced visual acuity based on the optomotor response results.Histology and immunolabeling demonstrated increased photoreceptor survival,improved outer nuclear layer thickness,and increased bipolar cell sprouting in Rho^(-/-)mice.These results indicate that transcorneal electrical stimulation effectively delivers the electrical field to the retina,improves photoreceptor survival in both human and mouse retinas,and increases visual function in Rho^(-/-)mice.Combined rectangular and ramp waveform stimulation can promote photoreceptor survival in a minimally invasive fashion. 展开更多
关键词 bipolar cells electrical stimulation NEUROPROTECTION photoreceptor degeneration RETINA retinal explants retinitis pigmentosa transcorneal electrical stimulation WAVEFORM
下载PDF
Optical-neural Stimulation in Non-human Primates:Modulating Brain Function and Behavior
8
作者 CHEN Yi-Bing WANG Huan YANG Yan 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2024年第10期2379-2391,共13页
Optical-neural stimulation,which encompasses cutting-edge techniques such as optogenetics and infrared neurostimulation,employs distinct mechanisms to modulate brain function and behavior.These advanced neuromodulatio... Optical-neural stimulation,which encompasses cutting-edge techniques such as optogenetics and infrared neurostimulation,employs distinct mechanisms to modulate brain function and behavior.These advanced neuromodulation techniques offer accurate manipulation of targeted areas,even selectively modulating specific neurons,in the brain.This makes it possible to investigate the cause-and-effect connections between neural activity and behavior,allowing for a better comprehension of the intricate brain dynamics towards complex environments.Non-human primates serve as an essential animal model for investigating these complex functions in brain research,bridging the gap between the basic research and clinical applications.One of the earliest optical studies utilizing optogenetic neuromodulation in monkeys was conducted in 2009.Since then,the optical-neural stimulations have been effectively applied in non-human primates.This review summarises recent research that employed optogenetics or infrared neurostimulation techniques to regulate brain function and behavior in non-human primates.The current state of optical-neural stimulations discussed here demonstrates their efficacy in advancing the understanding of brain systems.Nevertheless,there are still challenges that need to be addressed before they can fully achieve their potential. 展开更多
关键词 optical-neural stimulation OPTOGENETICS infrared neurostimulation non-human primates
下载PDF
Treadmill exercise in combination with acousto-optic and olfactory stimulation improves cognitive function in APP/PS1 mice through the brain-derived neurotrophic factor-and Cygb-associated signaling pathways
9
作者 Biao Xiao Chaoyang Chu +6 位作者 Zhicheng Lin Tianyuan Fang Yuyu Zhou Chuxia Zhang Jianghui Shan Shiyu Chen Liping Li 《Neural Regeneration Research》 SCIE CAS 2025年第9期2706-2726,共21页
A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigati... A reduction in adult neurogenesis is associated with behavioral abnormalities in patients with Alzheimer's disease.Consequently,enhancing adult neurogenesis represents a promising therapeutic approach for mitigating disease symptoms and progression.Nonetheless,nonpharmacological interventions aimed at inducing adult neurogenesis are currently limited.Although individual non-pharmacological interventions,such as aerobic exercise,acousto-optic stimulation,and olfactory stimulation,have shown limited capacity to improve neurogenesis and cognitive function in patients with Alzheimer's disease,the therapeutic effect of a strategy that combines these interventions has not been fully explored.In this study,we observed an age-dependent decrease in adult neurogenesis and a concurrent increase in amyloid-beta accumulation in the hippocampus of amyloid precursor protein/presenilin 1 mice aged 2-8 months.Amyloid deposition became evident at 4 months,while neurogenesis declined by 6 months,further deteriorating as the disease progressed.However,following a 4-week multifactor stimulation protocol,which encompassed treadmill running(46 min/d,10 m/min,6 days per week),40 Hz acousto-optic stimulation(1 hour/day,6 days/week),and olfactory stimulation(1 hour/day,6 days/week),we found a significant increase in the number of newborn cells(5'-bromo-2'-deoxyuridine-positive cells),immature neurons(doublecortin-positive cells),newborn immature neurons(5'-bromo-2'-deoxyuridine-positive/doublecortin-positive cells),and newborn astrocytes(5'-bromo-2'-deoxyuridine-positive/glial fibrillary acidic protein-positive cells).Additionally,the amyloid-beta load in the hippocampus decreased.These findings suggest that multifactor stimulation can enhance adult hippocampal neurogenesis and mitigate amyloid-beta neuropathology in amyloid precursor protein/presenilin 1 mice.Furthermore,cognitive abilities were improved,and depressive symptoms were alleviated in amyloid precursor protein/presenilin 1 mice following multifactor stimulation,as evidenced by Morris water maze,novel object recognition,forced swimming test,and tail suspension test results.Notably,the efficacy of multifactor stimulation in consolidating immature neurons persisted for at least 2weeks after treatment cessation.At the molecular level,multifactor stimulation upregulated the expression of neuron-related proteins(NeuN,doublecortin,postsynaptic density protein-95,and synaptophysin),anti-apoptosis-related proteins(Bcl-2 and PARP),and an autophagyassociated protein(LC3B),while decreasing the expression of apoptosis-related proteins(BAX and caspase-9),in the hippocampus of amyloid precursor protein/presenilin 1 mice.These observations might be attributable to both the brain-derived neurotrophic factor-mediated signaling pathway and antioxidant pathways.Furthermore,serum metabolomics analysis indicated that multifactor stimulation regulated differentially expressed metabolites associated with cell apoptosis,oxidative damage,and cognition.Collectively,these findings suggest that multifactor stimulation is a novel non-invasive approach for the prevention and treatment of Alzheimer's disease. 展开更多
关键词 acousto-optic stimulation adult neurogenesis Alzheimer's disease amyloid precursor protein/presenilin 1 mice amyloid-beta deposition brain cell apoptosis cognitive impairment depression-like behavior involuntary treadmill exercise olfactory stimulation serum metabolites
下载PDF
Geochemical characteristics and environmental implications of loess sequences in the Loess Plateau
10
作者 ZHANG Jialin ZHAO Zhongqiang +5 位作者 XIA Dinghong LI Zhenyang ZENG Liyuan HE Hongming SONG Yinxian CHEN Zhong 《High Technology Letters》 EI CAS 2024年第3期310-321,共12页
The major,trace,and rare earth elements of the Duanjiapo(DJP)section in the south of the Loess Plateau,the Jiaxian(JX)section in the north,and the Jiuzhoutai(JZT)section in the west are studied.The results show that t... The major,trace,and rare earth elements of the Duanjiapo(DJP)section in the south of the Loess Plateau,the Jiaxian(JX)section in the north,and the Jiuzhoutai(JZT)section in the west are studied.The results show that the main elemental characteristics of loess in three profiles are consistent with the upper continental crust(UCC).In terms of trace elements,Th,Nb,Zr,Hf,Y,Cs,W,Cr,V,Li,and Pb show relative enrichment compared with UCC;Rb,Ba,Sr and Be exhibit relative depletion.The average ofΣREE is 171.91ppm with a negative anomaly forδEu and essentially no anomaly forδCe.The results of K_(2)O/Na_(2)O,Rb/Sr ratios,as well as the leaching co-efficient from three profiles,indicate DJP>JX>JZT,suggesting that DJP experiences the strongest weathering leaching effect.The chemical index of alteration(CIA)reveals that all three profiles of loess are in the primary stage of Ca and Na depletion.DJP is generally in the early to moderate stage of chemical weathering,while JX and JZT are both in the early stage. 展开更多
关键词 LOESS chemical weathering element geochemistry chemical index of alteration(CIA)
下载PDF
Prolonged intermittent theta burst stimulation restores the balance between A_(2A)R-and A_(1)R-mediated adenosine signaling in the 6-hydroxidopamine model of Parkinson's disease
11
作者 Milica Zeljkovic Jovanovic Jelena Stanojevic +4 位作者 Ivana Stevanovic Milica Ninkovic Tihomir V.Ilic Nadezda Nedeljkovic Milorad Dragic 《Neural Regeneration Research》 SCIE CAS 2025年第7期2053-2067,共15页
An imbalance in adenosine-mediated signaling,particularly the increased A_(2A)R-mediated signaling,plays a role in the pathogenesis of Parkinson's disease.Existing therapeutic approaches fail to alter disease prog... An imbalance in adenosine-mediated signaling,particularly the increased A_(2A)R-mediated signaling,plays a role in the pathogenesis of Parkinson's disease.Existing therapeutic approaches fail to alter disease progression,demonstrating the need for novel approaches in PD.Repetitive transcranial magnetic stimulation is a non-invasive approach that has been shown to improve motor and non-motor symptoms of Parkinson's disease.However,the underlying mechanisms of the beneficial effects of repetitive transcranial magnetic stimulation remain unknown.The purpose of this study is to investigate the extent to which the beneficial effects of prolonged intermittent theta burst stimulation in the 6-hydroxydopamine model of experimental parkinsonism are based on modulation of adenosine-mediated signaling.Animals with unilateral 6-hydroxydopamine lesions underwent intermittent theta burst stimulation for 3 weeks and were tested for motor skills using the Rotarod test.Immunoblot,quantitative reverse transcription polymerase chain reaction,immunohistochemistry,and biochemical analysis of components of adenosine-mediated signaling were performed on the synaptosomal fraction of the lesioned caudate putamen.Prolonged intermittent theta burst stimulation improved motor symptoms in 6-hydroxydopamine-lesioned animals.A 6-hydroxydopamine lesion resulted in progressive loss of dopaminergic neurons in the caudate putamen.Treatment with intermittent theta burst stimulation began 7 days after the lesion,coinciding with the onset of motor symptoms.After treatment with prolonged intermittent theta burst stimulation,complete motor recovery was observed.This improvement was accompanied by downregulation of the e N/CD73-A_(2A)R pathway and a return to physiological levels of A_(1)R-adenosine deaminase 1 after 3 weeks of intermittent theta burst stimulation.Our results demonstrated that 6-hydroxydopamine-induced degeneration reduced the expression of A_(1)R and elevated the expression of A_(2A)R.Intermittent theta burst stimulation reversed these effects by restoring the abundances of A_(1)R and A_(2A)R to control levels.The shift in ARs expression likely restored the balance between dopamine-adenosine signaling,ultimately leading to the recovery of motor control. 展开更多
关键词 A_(1)R A_(2A)R adenosine receptors ADENOSINE ecto-5′-nucleotidase intermittent theta burst stimulation non-invasive brain stimulation Parkinson's disease purinergic signalling
下载PDF
Working toward an integrated plasticity/network framework for repetitive transcranial magnetic stimulation to inform tailored treatments 被引量:2
12
作者 Jessica Moretti Jennifer Rodger 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第7期1423-1424,共2页
Non-invasive brain stimulation techniques(NIBS),including repetitive transcranial magnetic stimulation(rTMS) and transcranial electric stim ulation(tES),are increasingly being adopted clinically for treatment of neuro... Non-invasive brain stimulation techniques(NIBS),including repetitive transcranial magnetic stimulation(rTMS) and transcranial electric stim ulation(tES),are increasingly being adopted clinically for treatment of neuropsychiatric and neurological disorders,albeit with varying success.The rationale behind the use of NIBS has historically been that stim ulation techniques modulate neuronal activity in the targeted region and consequently induce plasticity which can lead to therapeutic outcomes. 展开更多
关键词 stimulation TRANSCRANIAL treatment
下载PDF
Jet formation and penetration performance of a double-layer charge liner with chemically-deposited tungsten as the inner liner 被引量:2
13
作者 Bihui Hong Wenbin Li +2 位作者 Yiming Li Zhiwei Guo Binyou Yan 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期374-385,共12页
This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double... This paper proposes a type of double-layer charge liner fabricated using chemical vapor deposition(CVD)that has tungsten as its inner liner.The feasibility of this design was evaluated through penetration tests.Double-layer charge liners were fabricated by using CVD to deposit tungsten layers on the inner surfaces of pure T2 copper liners.The microstructures of the tungsten layers were analyzed using a scanning electron microscope(SEM).The feasibility analysis was carried out by pulsed X-rays,slug-retrieval test and static penetration tests.The shaped charge jet forming and penetration law of inner tungsten-coated double-layer liner were studied by numerical simulation method.The results showed that the double-layer liners could form well-shaped jets.The errors between the X-ray test results and the numerical results were within 11.07%.A slug-retrieval test was found that the retrieved slug was similar to a numerically simulated slug.Compared with the traditional pure copper shaped charge jet,the penetration depth of the double-layer shaped charge liner increased by 11.4% and>10.8% respectively.In summary,the test results are good,and the numerical simulation is in good agreement with the test,which verified the feasibility of using the CVD method to fabricate double-layer charge liners with a high-density and high-strength refractory metal as the inner liner. 展开更多
关键词 Shaped charge chemical vapor deposition TUNGSTEN Double-layer charge liner X-ray PENETRATION
下载PDF
Safety and effectiveness of neuromuscular electrical stimulation in cardiac surgery:A systematic review 被引量:2
14
作者 Christos Kourek Marios Kanellopoulos +4 位作者 Vasiliki Raidou Michalis Antonopoulos Eleftherios Karatzanos Irini Patsaki Stavros Dimopoulos 《World Journal of Cardiology》 2024年第1期27-39,共13页
BACKGROUND Lack of mobilization and prolonged stay in the intensive care unit(ICU)are major factors resulting in the development of ICU-acquired muscle weakness(ICUAW).ICUAW is a type of skeletal muscle dysfunction an... BACKGROUND Lack of mobilization and prolonged stay in the intensive care unit(ICU)are major factors resulting in the development of ICU-acquired muscle weakness(ICUAW).ICUAW is a type of skeletal muscle dysfunction and a common complication of patients after cardiac surgery,and may be a risk factor for prolonged duration of mechanical ventilation,associated with a higher risk of readmission and higher mortality.Early mobilization in the ICU after cardiac surgery has been found to be low with a significant trend to increase over ICU stay and is also associated with a reduced duration of mechanical ventilation and ICU length of stay.Neuromuscular electrical stimulation(NMES)is an alternative modality of exercise in patients with muscle weakness.A major advantage of NMES is that it can be applied even in sedated patients in the ICU,a fact that might enhance early mobilization in these patients.AIM To evaluate safety,feasibility and effectiveness of NMES on functional capacity and muscle strength in patients before and after cardiac surgery.METHODS We performed a search on Pubmed,Physiotherapy Evidence Database(PEDro),Embase and CINAHL databases,selecting papers published between December 2012 and April 2023 and identified published randomized controlled trials(RCTs)that included implementation of NMES in patients before after cardiac surgery.RCTs were assessed for methodological rigor and risk of bias via the PEDro.The primary outcomes were safety and functional capacity and the secondary outcomes were muscle strength and function.RESULTS Ten studies were included in our systematic review,resulting in 703 participants.Almost half of them performed NMES and the other half were included in the control group,treated with usual care.Nine studies investigated patients after cardiac surgery and 1 study before cardiac surgery.Functional capacity was assessed in 8 studies via 6MWT or other indices,and improved only in 1 study before and in 1 after cardiac surgery.Nine studies explored the effects of NMES on muscle strength and function and,most of them,found increase of muscle strength and improvement in muscle function after NMES.NMES was safe in all studies without any significant complication.CONCLUSION NMES is safe,feasible and has beneficial effects on muscle strength and function in patients after cardiac surgery,but has no significant effect on functional capacity. 展开更多
关键词 Neuromuscular electrical stimulation Cardiac surgery coronary artery bypass grafting Heart valve replacement Peak VO2 SAFETY
下载PDF
Valorization of Camellia oleifera oil processing byproducts to value-added chemicals and biobased materials: A critical review 被引量:1
15
作者 Xudong Liu Yiying Wu +11 位作者 Yang Gao Zhicheng Jiang Zicheng Zhao Wenquan Zeng Mingyu Xie Sisi Liu Rukuan Liu Yan Chao Suli Nie Aihua Zhang Changzhu Li Zhihong Xiao 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第1期28-53,共26页
The C.oleifera oil processing industry generates large amounts of solid wastes,including C.oleifera shell(COS)and C.oleifera cake(COC).Distinct from generally acknowledged lignocellulosic biomass(corn stover,bamboo,bi... The C.oleifera oil processing industry generates large amounts of solid wastes,including C.oleifera shell(COS)and C.oleifera cake(COC).Distinct from generally acknowledged lignocellulosic biomass(corn stover,bamboo,birch,etc.),Camellia wastes contain diverse bioactive substances in addition to the abundant lignocellulosic components,and thus,the biorefinery utilization of C.oleifera processing byproducts involves complicated processing technologies.This reviewfirst summarizes various technologies for extracting and converting the main components in C.oleifera oil processing byproducts into value-added chemicals and biobased materials,as well as their potential applications.Microwave,ultrasound,and Soxhlet extractions are compared for the extraction of functional bioactive components(tannin,flavonoid,saponin,etc.),while solvothermal conversion and pyrolysis are discussed for the conversion of lignocellulosic components into value-added chemicals.The application areas of these chemicals according to their properties are introduced in detail,including utilizing antioxidant and anti-in-flammatory properties of the bioactive substances for the specific application,as well as drop-in chemicals for the substitution of unrenewable fossil fuel-derived products.In addition to chemical production,biochar fabricated from COS and its applications in thefields of adsorption,supercapacitor,soil remediation and wood composites are comprehensively reviewed and discussed.Finally,based on the compositions and structural characteristics of C.oleifera byproducts,the development of full-component valorization strategies and the expansion of the appli-cationfields are proposed. 展开更多
关键词 Camellia oleifera shell Camellia oleifera cake Value-added chemicals Bioactive components Biobased materials
下载PDF
A novel method for simulating nuclear explosion with chemical explosion to form an approximate plane wave: Field test and numerical simulation 被引量:1
16
作者 Wei Ming Xiaojie Yang +3 位作者 Yadong Mao Xiang Wang Manchao He Zhigang Tao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2137-2153,共17页
A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in... A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in nuclear explosion power,underground protection engineering enabled by explosion-proof impact theory and technology ushered in a new challenge.This paper proposes to simulate nuclear explosion tests with on-site chemical explosion tests in the form of multi-hole explosions.First,the mechanism of using multi-hole simultaneous blasting to simulate a nuclear explosion to generate approximate plane waves was analyzed.The plane pressure curve at the vault of the underground protective tunnel under the action of the multi-hole simultaneous blasting was then obtained using the impact test in the rock mass at the site.According to the peak pressure at the vault plane,it was divided into three regions:the stress superposition region,the superposition region after surface reflection,and the approximate plane stress wave zone.A numerical simulation approach was developed using PFC and FLAC to study the peak particle velocity in the surrounding rock of the underground protective cave under the action of multi-hole blasting.The time-history curves of pressure and peak pressure partition obtained by the on-site multi-hole simultaneous blasting test and numerical simulation were compared and analyzed,to verify the correctness and rationality of the formation of an approximate plane wave in the simulated nuclear explosion.This comparison and analysis also provided a theoretical foundation and some research ideas for the ensuing study on the impact of a nuclear explosion. 展开更多
关键词 Approximate plane wave Multi-hole simultaneous blasting chemical explosion Nuclear explosion Pressure sensor inclusion
下载PDF
Exploring the synergy of the eyebrain connection:neuromodulation approaches for neurodegenerative disorders through transcorneal electrical stimulation
17
作者 Antara Verma Stephen K.Agadagba Leanne Lai-Hang Chan 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第10期2097-2098,共2页
The connection and interaction between the eye and the brain are crucial to understanding brain disorders(Marchesi et al.,2021).Both the eye and the brain have a limited regenerative capacity as there are few progenit... The connection and interaction between the eye and the brain are crucial to understanding brain disorders(Marchesi et al.,2021).Both the eye and the brain have a limited regenerative capacity as there are few progenitor cells,and nerve cells do not replicate.Hence,neurodegeneration implicates irreversible damage to the central nervous system,as observed in several neurodegenerative diseases(Marchesi et al.,2021). 展开更多
关键词 stimulation DEGENERATIVE
下载PDF
Effect of transcranial direct current stimulation on postoperative sleep disturbance in older patients undergoing lower limb major arthroplasty:a prospective,double-blind,pilot,randomised controlled trial
18
作者 Jie Yang Mingshu Tao +12 位作者 Rongguang Liu Jiaxing Fang Chunyan Li Dexian Chen Qi Wei Xingyu Xiong Wenxin Zhao Wen Tan Yuan Han Hongxing Zhang He Liu Song Zhang Junli Cao 《General Psychiatry》 CSCD 2024年第2期224-233,共10页
Background Postoperative sleep disturbance(PSD)is a common and serious postoperative complication and is associated with poor postoperative outcomes.Aims This study aimed to investigate the effect of transcranial dire... Background Postoperative sleep disturbance(PSD)is a common and serious postoperative complication and is associated with poor postoperative outcomes.Aims This study aimed to investigate the effect of transcranial direct current stimulation(tDCS)on PSD in older patients undergoing lower limb major arthroplasty.Methods In this prospective,double-blind,pilot,randomised,sham-controlled trial,patients 65 years and over undergoing lower limb major arthroplasty were randomly assigned to receive active tDCS(a-tDCS)or sham tDCS(s-tDCS).The primary outcomes were the objective sleep measures on postoperative nights(N)1 and N2.Results 116 inpatients were assessed for eligibility,and a total of 92 patients were enrolled;47 received a-tDCS and 45 received s-tDCS.tDCS improved PSD by altering the following sleep measures in the a-tDCS and s-tDCS groups;the respective comparisons were as follows:the promotion of rapid eye movement(REM)sleep time on N1(64.5(33.5-105.5)vs 19.0(0.0,45.0)min,F=20.10,p<0.001)and N2(75.0(36.0-120.8)vs 30.0(1.3-59.3)min,F=12.55,p<0.001);the total sleep time on N1(506.0(408.0-561.0)vs 392.0(243.0-483.5)min,F=14.13,p<0.001)and N2(488.5(455.5-548.5)vs 346.0(286.5-517.5)min,F=7.36,p=0.007);the deep sleep time on N1(130.0(103.3-177.0)vs 42.5(9.8-100.8)min,F=24.4,p<0.001)and N2(103.5(46.0-154.8)vs 57.5(23.3-106.5)min,F=8.4,p=0.004);and the percentages of light sleep and REM sleep on N1 and N2(p<0.05 for each).The postoperative depression and anxiety scores did not differ significantly between the two groups.No significant adverse events were reported.Conclusion In older patients undergoing lower limb major arthroplasty,a single session of anodal tDCS over the left dorsolateral prefrontal cortex showed a potentially prophylactic effect in improving postoperative short-term objective sleep measures.However,this benefit was temporary and was not maintained over time. 展开更多
关键词 SLEEP stimulation POSTOPERATIVE
下载PDF
Comparisons of transcranial alternating current stimulation and repetitive transcranial magnetic stimulation treatment therapy for insomnia:a pilot study
19
作者 Ziqiang Shao Yongjian Guo +7 位作者 Lirong Yue Xiaoyang Liu Jiayi Liu Xumeng Zhao Xiaona Sheng Dahua Yu Yifei Zhu Kai Yuan 《General Psychiatry》 CSCD 2024年第1期163-167,共5页
To the editor:Insomnia disorder has a serious and widespread detrimental effect on humans with comorbidity with other mental or physical health problems.In recent years,noninvasive brain stimulation(NIBS)techniques,es... To the editor:Insomnia disorder has a serious and widespread detrimental effect on humans with comorbidity with other mental or physical health problems.In recent years,noninvasive brain stimulation(NIBS)techniques,especially transcranial magnetic stimulation(TMS)and transcranial electrical stimulation,have been increasingly used for the treatment of brain diseases,including insomnia disorder. 展开更多
关键词 stimulation TRANSCRANIAL INS
下载PDF
Brain-wide activation involved in 15 mA transcranial alternating current stimulation in patients with first-episode major depressive disorder
20
作者 Jie Wang Wenfeng Zhao +8 位作者 Huang Wang Haixia Leng Qing Xue Mao Peng Baoquan Min Xiukun Jin Liucen Tan Keming Gao Hongxing Wang 《General Psychiatry》 CSCD 2024年第2期265-273,共9页
Background Although 15 mA transcranial alternating current stimulation(tACS)has a therapeutic effect on depression,the activations of brain structures in humans accounting for this tACS configuration remain largely un... Background Although 15 mA transcranial alternating current stimulation(tACS)has a therapeutic effect on depression,the activations of brain structures in humans accounting for this tACS configuration remain largely unknown.Aims To investigate which intracranial brain structures are engaged in the tACS at 77.5 Hz and 15 mA,delivered via the forehead and the mastoid electrodes in the human brain.Methods Actual human head models were built using the magnetic resonance imagings of eight outpatient volunteers with drug-naïve,first-episode major depressive disorder and then used to perform the electric field distributions with SimNIBS software.Results The electric field distributions of the sagittal,coronal and axial planes showed that the bilateral frontal lobes,bilateral temporal lobes,hippocampus,cingulate,hypothalamus,thalamus,amygdala,cerebellum and brainstem were visibly stimulated by the 15 mA tACS procedure.Conclusions Brain-wide activation,including the cortex,subcortical structures,cerebellum and brainstem,is involved in the 15 mA tACS intervention for first-episode major depressive disorder.Our results indicate that the simultaneous involvement of multiple brain regions is a possible mechanism for its effectiveness in reducing depressive symptoms. 展开更多
关键词 stimulation INVOLVEMENT ACTIVATION
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部