Alcoholic liver injury is a liver disease caused by excessive alcohol consumption,which can lead to chronic liver disease death.Solanum Nigrum Linn taste bitter,cold,has the effect of clearing heat and detoxification,...Alcoholic liver injury is a liver disease caused by excessive alcohol consumption,which can lead to chronic liver disease death.Solanum Nigrum Linn taste bitter,cold,has the effect of clearing heat and detoxification,promoting blood and detumescence.Solanum Nigrum Linn fruit contains a variety of antioxidant enzymes,can remove the body produced by aerobic metabolism harmful substances.In this paper,a model of alcohol-induced liver injury in C57BL/6 mice was established to evaluate the protective effect of Solanum Nigrum Linn green fruit(SNGF)ethanolic extract on alcohol-induced liver injury.H&E staining and oil red O(ORO)staining showed that hepatic lobules were clearly demarcated,vacuoles were significantly reduced and lipid droplets were reduced in SNGF ethanolic extract treatment group.Serum levels of TC,TG,LDH,TBA,AKP,ALT and AST were decreased in the SNGF ethanolic extract treatment group,and SNGF ethanolic extract could clear reactive oxygen species(ROS)in time.MDA content was signifi cantly decreased after SNGF ethanolic extract treatment,while superoxide dismutase(SOD)and GSH-Px contents were increased after SNGF ethanolic extract treatment.These results suggest that SNGF ethanolic extract has a protective effect on alcohol-induced liver injury.展开更多
The main purpose of this study was to examine the effects of plant species diversity and functional composition (the identity of the plant functional groups) on ecosystem stability of Stipa, communities in the Inner M...The main purpose of this study was to examine the effects of plant species diversity and functional composition (the identity of the plant functional groups) on ecosystem stability of Stipa, communities in the Inner Mongolia Plateau. The research work was based on a 12-year study (from 1984 to 1995) of species abundance, diversity, and primary productivity of four Stipa communities, i.e. S. baicalensis Roshev., S. grandis P. Smirn., S, krylovii Roshev., and S. klemenzii Roshev. respectively. The Shnnon-Wiener index was used as a measurement of plant diversity, while functional composition was used to differentiate the functional groups that were included in the communities. The plant species of four Stipa communities were classified into functional groups based on the differences in life forms and ecological groups, which influence their performance in resource requirements, seasonality of growth, tolerance to water stress, and life history. Plant species were classified into five functional groups based on their differences in life form, shrubs and half shrubs, perennial bunch grasses, perennial rhizome grasses, forbs, annuals and biennials. Based on their differences in water requirement these species were classified into four functional groups: xerads, intermediate xerads, intermediate mesophytes, and mesophytes. The results showed: 1) Plant species diversity stabilized ecosystem processes. Shannon-Wiener index were 2.401 4, 2.172 0, 1.624 8, 0.354 3 from S. baicalensis community to S. grandis, S. krylovii and S. klemenzii community, respectively. The dynamics of the aboveground net primary productivity (ANPP) for a 12-year's period showed a reverse pattern, the coefficients of variation of the four communities were 21.94%, 20.63%, 29.21% and 39.72% respectively. 2) The Life form functional group component of diversity was a greater determinant of the ecosystem processes than the species component of diversity. The effects of perennial bunch grasses, perennial rhizome grasses and forbs on community stability were highly significant. 3) The ecological group component of diversity was also a great determinant of the ecosystem processes. The effects of xerads, intermediate xerads, and mesophytes on community stability were also very strong.展开更多
[Objective] The experiment aimed to research the photosynthetic characteristics of Calophyllum inophyllum Linn.and the relations between Calophyllum inophyllum Linn. and ecological factors.[Method] The portable photos...[Objective] The experiment aimed to research the photosynthetic characteristics of Calophyllum inophyllum Linn.and the relations between Calophyllum inophyllum Linn. and ecological factors.[Method] The portable photosynthesis system(Li-6400) was used to determine photosynthetic characteristics of 6-year-old Calophyllum inophyllum Linn.[Result] Both the leaf net photosynthetic rate change and diurnal variation of transpiration rate were single peak type.The relations among the leaf net photosynthetic rate of Calophyllum inophyllum Linn.and photosynthetically active radiation,CO2 concentration and other relevant ecological factors(including transpiration rate, stomatal conductance, difference of vapour pressure and leaf temperature) were two quadratic linear relations.[Conclusion] Calophyllum inophyllum Linn. preferred strong light irradiation and high temperature environment and the experiment has provided foundations for ecological and commercial cultivations.展开更多
[ Objective] The aim of this study was to establish the optimum cpSSR-PCR system for Jatropha curcas Linn. [ Method] cpSSR-PCR amplification system for Jatropha curcas Linn influenced by five factors including Taq DNA...[ Objective] The aim of this study was to establish the optimum cpSSR-PCR system for Jatropha curcas Linn. [ Method] cpSSR-PCR amplification system for Jatropha curcas Linn influenced by five factors including Taq DNA polymerase, Mg^2+ , DNA template, dNTP and primer were optimized from several levels. [ Result] The optimum concentration of 20 μl reaction system was 10 × Buffer, 2.00 mmol/L Mg^2+ , 2 U/μl Taq DNA polymerase, 0.2 mmol/L dNTP, 0.2 μmol/L primer and 35 ng/μl DNA template. [ Conclusion] The optimum annealing temperature for cpSSR-PCR reaction system is 52 ℃, and the cpSSR reaction system is steady and reproducible.展开更多
Greenhouse cultivation in northern China has the characteristic of single mode, and the intercropping mode is not common. Greenhouse intercropping of green asparagus (Asparagus officinalis Linn) and coriander (Cori...Greenhouse cultivation in northern China has the characteristic of single mode, and the intercropping mode is not common. Greenhouse intercropping of green asparagus (Asparagus officinalis Linn) and coriander (Coriandrum sativurn L.) not only could increase vegetable kinds, but also could improve cropping index, and the asparagus growers' income could also be improved. This paper introduced the intercropping technique of green asparagus and coriander, so as to provide technical support for large-area extension of greenhouse green asparagus cultivation and break the situation of single mode for .qreenhouse cultivation.展开更多
文摘Alcoholic liver injury is a liver disease caused by excessive alcohol consumption,which can lead to chronic liver disease death.Solanum Nigrum Linn taste bitter,cold,has the effect of clearing heat and detoxification,promoting blood and detumescence.Solanum Nigrum Linn fruit contains a variety of antioxidant enzymes,can remove the body produced by aerobic metabolism harmful substances.In this paper,a model of alcohol-induced liver injury in C57BL/6 mice was established to evaluate the protective effect of Solanum Nigrum Linn green fruit(SNGF)ethanolic extract on alcohol-induced liver injury.H&E staining and oil red O(ORO)staining showed that hepatic lobules were clearly demarcated,vacuoles were significantly reduced and lipid droplets were reduced in SNGF ethanolic extract treatment group.Serum levels of TC,TG,LDH,TBA,AKP,ALT and AST were decreased in the SNGF ethanolic extract treatment group,and SNGF ethanolic extract could clear reactive oxygen species(ROS)in time.MDA content was signifi cantly decreased after SNGF ethanolic extract treatment,while superoxide dismutase(SOD)and GSH-Px contents were increased after SNGF ethanolic extract treatment.These results suggest that SNGF ethanolic extract has a protective effect on alcohol-induced liver injury.
文摘The main purpose of this study was to examine the effects of plant species diversity and functional composition (the identity of the plant functional groups) on ecosystem stability of Stipa, communities in the Inner Mongolia Plateau. The research work was based on a 12-year study (from 1984 to 1995) of species abundance, diversity, and primary productivity of four Stipa communities, i.e. S. baicalensis Roshev., S. grandis P. Smirn., S, krylovii Roshev., and S. klemenzii Roshev. respectively. The Shnnon-Wiener index was used as a measurement of plant diversity, while functional composition was used to differentiate the functional groups that were included in the communities. The plant species of four Stipa communities were classified into functional groups based on the differences in life forms and ecological groups, which influence their performance in resource requirements, seasonality of growth, tolerance to water stress, and life history. Plant species were classified into five functional groups based on their differences in life form, shrubs and half shrubs, perennial bunch grasses, perennial rhizome grasses, forbs, annuals and biennials. Based on their differences in water requirement these species were classified into four functional groups: xerads, intermediate xerads, intermediate mesophytes, and mesophytes. The results showed: 1) Plant species diversity stabilized ecosystem processes. Shannon-Wiener index were 2.401 4, 2.172 0, 1.624 8, 0.354 3 from S. baicalensis community to S. grandis, S. krylovii and S. klemenzii community, respectively. The dynamics of the aboveground net primary productivity (ANPP) for a 12-year's period showed a reverse pattern, the coefficients of variation of the four communities were 21.94%, 20.63%, 29.21% and 39.72% respectively. 2) The Life form functional group component of diversity was a greater determinant of the ecosystem processes than the species component of diversity. The effects of perennial bunch grasses, perennial rhizome grasses and forbs on community stability were highly significant. 3) The ecological group component of diversity was also a great determinant of the ecosystem processes. The effects of xerads, intermediate xerads, and mesophytes on community stability were also very strong.
文摘[Objective] The experiment aimed to research the photosynthetic characteristics of Calophyllum inophyllum Linn.and the relations between Calophyllum inophyllum Linn. and ecological factors.[Method] The portable photosynthesis system(Li-6400) was used to determine photosynthetic characteristics of 6-year-old Calophyllum inophyllum Linn.[Result] Both the leaf net photosynthetic rate change and diurnal variation of transpiration rate were single peak type.The relations among the leaf net photosynthetic rate of Calophyllum inophyllum Linn.and photosynthetically active radiation,CO2 concentration and other relevant ecological factors(including transpiration rate, stomatal conductance, difference of vapour pressure and leaf temperature) were two quadratic linear relations.[Conclusion] Calophyllum inophyllum Linn. preferred strong light irradiation and high temperature environment and the experiment has provided foundations for ecological and commercial cultivations.
基金Supported by National Scientific and Technical Supporting Project ofStudies on Superior Species Selecting and Breeding Technique ofJatropha curcasLinn(2007BAD50B01)~~
文摘[ Objective] The aim of this study was to establish the optimum cpSSR-PCR system for Jatropha curcas Linn. [ Method] cpSSR-PCR amplification system for Jatropha curcas Linn influenced by five factors including Taq DNA polymerase, Mg^2+ , DNA template, dNTP and primer were optimized from several levels. [ Result] The optimum concentration of 20 μl reaction system was 10 × Buffer, 2.00 mmol/L Mg^2+ , 2 U/μl Taq DNA polymerase, 0.2 mmol/L dNTP, 0.2 μmol/L primer and 35 ng/μl DNA template. [ Conclusion] The optimum annealing temperature for cpSSR-PCR reaction system is 52 ℃, and the cpSSR reaction system is steady and reproducible.
文摘Greenhouse cultivation in northern China has the characteristic of single mode, and the intercropping mode is not common. Greenhouse intercropping of green asparagus (Asparagus officinalis Linn) and coriander (Coriandrum sativurn L.) not only could increase vegetable kinds, but also could improve cropping index, and the asparagus growers' income could also be improved. This paper introduced the intercropping technique of green asparagus and coriander, so as to provide technical support for large-area extension of greenhouse green asparagus cultivation and break the situation of single mode for .qreenhouse cultivation.