Electromagnetic stirring is one of the widely applied techniques to modify the quality of casting billets.Different from conventional rotate stirring,the helical stirring is more professional in assisting multi-dimens...Electromagnetic stirring is one of the widely applied techniques to modify the quality of casting billets.Different from conventional rotate stirring,the helical stirring is more professional in assisting multi-dimensional flow of molten metal and eliminating solidification defects.In this study,the single-winding helical stirring(SWHS)was introduced,offering advantages such as smaller volume and lower electromagnetic shielding compared to traditional helical stirring methods.Following a comprehensive numerical simulation,the stirring parameters of SWHS were adjusted to yoke inclination angle of 43°and frequency of 12 Hz.The higher electromagnetic force and flow velocity in drawing direction,as well as the lower temperature gradient induced by the SWHS,are positive factors for homogeneous solidification of billet.The experimental results on Al-8%Si alloy and 0.4%C-1.1%Mn steel demonstrate that compared to rotate stirring,the SWHS process can induce better billet quality and is more effective in accelerating the equiaxed expansion and reducing element segregation.The SWHS process can enhance the equiaxed ratio of the billet by 58.3%and reduce segregation degree of carbon element by 10.97%.Consequently,SWHS holds great promise as a potential approach for improving the quality of continuous casting billets.展开更多
In gas injection refining processes,wide dispersion of small bubbles in the bath is indispensable for high refining efficiency.Eccentric mechanical stirring with unidirectional impeller rotation was tested using a wat...In gas injection refining processes,wide dispersion of small bubbles in the bath is indispensable for high refining efficiency.Eccentric mechanical stirring with unidirectional impeller rotation was tested using a water model for pursuing better bubble disintegration and dispersion.Effects of various factors on bubble disintegration and dispersion were investigated.These factors were stirring mode,eccentricity and rotation speed,nozzle structure,nozzle immersion depth,and gas flow rate.Gas injection from a nozzle at the end of the impeller shaft and from an immersed lance was studied.Under eccentric stirring,a vortex was formed away from the shaft.Small bubbles were produced in the strong turbulence or high shear stress field near the rotating impeller and moved in the direction to the vortex keeping up with the macroscopic flow induced by the mechanical stirring.Thus small bubbles could disperse widely in the bath under eccentric stirring with unidirectional rotation.展开更多
The effects of pouring temperature, short electromagnetic stirring with low strength and then soaking treatment on the microstructure of AISi7Mg alloy were investigated. The results show that if AlSi7Mg alloy is poure...The effects of pouring temperature, short electromagnetic stirring with low strength and then soaking treatment on the microstructure of AISi7Mg alloy were investigated. The results show that if AlSi7Mg alloy is poured at 630 or 650℃ and meanwhile stirred by an electromagnetic field at a low power for a short time, the pouring process can be easily controlled and most solidified primary α-Al grains become spherical and only a few of them are rosette-like. Weak electromagnetic stirring makes the temperature field more homogeneous and makes the primary α-Al grains disperse in a larger region, which leads to the spherical microstructures of primary α-Al grains. When the AISi7Mg alloy is soaked or reheated at the semisolid state, the primary α-Al grains ripen further and they become more spherical, which is favorable to the semi-solid forming of AlSi7Mg alloy.展开更多
The semi-solid slurry of a hypoeutectic Al-Si alloy was manufactured by low superheat pouring and weak electromagnetic stirring. The effects of pouting temperature and stirring power on the semi-solid slurry were inve...The semi-solid slurry of a hypoeutectic Al-Si alloy was manufactured by low superheat pouring and weak electromagnetic stirring. The effects of pouting temperature and stirring power on the semi-solid slurry were investigated. The results indicated that the semi-solid slurry to satisfy rheocasting can be manufactured by low superheat pouring and weak electromagnetic stirring. The pouring temperature (or superheat) and the stirring power remarkably affected the morphology of primary α-Al and the size of primary α-Al, and there is no obvious effect of stirring time on primary α-Al. Compared with the samples made by low superheat pouring with no stirring, the nucleation rate, particle morphology and grain size of primary α-Al in A356 were markedly improved by low superheat pouring and weak electromagnetic stirring. On the condition of weak electromagnetic stirring, the pouring temperature with low superheat can be suitably raised to reach the effectiveness obtained from the lower pouring temperature without stirring.展开更多
To investigate the possibility of substituting the mechanical stirring system with electromagnetic stirring (EMS) system for aluminum rheo die-casting, the EMS under the different stirring cooling conditions was carri...To investigate the possibility of substituting the mechanical stirring system with electromagnetic stirring (EMS) system for aluminum rheo die-casting, the EMS under the different stirring cooling conditions was carried out. It was found that in the early period of solidification, the dendrite breakages led to a fine primary phase. When dendrites grew coarsely, the effect of ripening on grain size overwhelmed that of dendrite breakage. It was also found that the high cooling rate favored large nucleation rate, and led to a fine primary phase. But high cooling rate also made the growth rate of the dendrite arm, which prevented the dendrite arm from being sheared off. Therefore there were a suitable stirring time and suitable cooling rate to obtain the best rheo die-casting structure. Qualified semisolid A356 aluminum alloy was successfully manufactured with short time EMS.展开更多
The semi-solid slurry of hypoeutectic Al-Si alloy was manufactured by low superheat pouring and weak electromagnetic stirring. The effects of pouring temperature and stirring power on the semi-solid slurry making proc...The semi-solid slurry of hypoeutectic Al-Si alloy was manufactured by low superheat pouring and weak electromagnetic stirring. The effects of pouring temperature and stirring power on the semi-solid slurry making process were investigated. The results indicate that the semi-solid slurry to satisfy rheocasting requirement can be made by a combination of low superheat pouring and weak electromagnetic stirring. The pouring temperature (or superheat) and the stirring power significantly affect the morphology and the size of primary α-Al, while there is no obvious effect of the stirring time on primary α-Al. Compared with the samples made by low superheat pouring without stirring, the nucleation rate, particle morphology and grain size of primary α-Al in A356 Al alloy are markedly improved by a process of applying both low superheat pouring and weak electromagnetic stirring. Under the condition of weak electromagnetic stirring applied, the pouring temperature with low superheat can be equivalently to reach the effectiveness obtained from the even lower pouring temperature without stirring.展开更多
Physical upgrading of graphite is typically achieved with many stages of grinding and flotation to produce a concentrate with approximately 95% carbon grade.An innovative grinding and column flotation process has been...Physical upgrading of graphite is typically achieved with many stages of grinding and flotation to produce a concentrate with approximately 95% carbon grade.An innovative grinding and column flotation process has been developed for efficient graphite upgrading to substantially simplify the process flowsheet and reduce operating costs.In this process,a high-pressure grinding roller(HPGR) and a stirred mill were employed as primary comminution techniques and a nanobubble flotation column as a key separation process.The results obtained with a crystalline flake graphite sample with a carbon grade of 11.15% show that the novel process can produce a concentrate with 94.82% carbon grade and 97.89% recovery from an open circuit of one rougher and two cleaner flotation stages.Scanning electron microscope(SEM)microphotographs indicate that HPGR offers the advantage of more effective protection of graphite flakes during crushing.Grinding test results show that stirred mill could not only protect graphite flakes but also promote the efficient liberation of graphite.Compared with the traditional flotation process,nanobubble flotation can effectively recover ultrafine graphite.The new process possesses a number of important advantages over the traditional method,including substantially higher graphite recovery,greatly simplified process flowsheet,better protection of flake size,reduced reagent consumption and process costs,etc.展开更多
The semi-solid slurry of A356 alloy, which is grain-refined by Al-Ti-B master alloy, is prepared by low superheat pouring and slight electromagnetic stirring. The effects of grain refining on the morphology and the gr...The semi-solid slurry of A356 alloy, which is grain-refined by Al-Ti-B master alloy, is prepared by low superheat pouring and slight electromagnetic stirring. The effects of grain refining on the morphology and the grain size of the primary α phase in the slurry manufactured are researched. The results indicate that the slurry with particle-like and rosette-like primary α phases can be prepared by low superheat pouring and slight electromagnetic stirring from liquid A356 alloy grain-refined, in which the pouring temperature can be suitably raised. Compared with the A356 samples without grain refining, the grain size and particle morphology of primary α phase as well as the distribution of the grain with particle-like or rosette-like along radial in the ingot in A356 are markedly improved by grain refining.展开更多
A method to reach the globular weld structure of A356 aluminum alloy using stirring the localized semisolid zone during butt-joining is developed.Since the heat conductivity of this alloy is very high, the accurate co...A method to reach the globular weld structure of A356 aluminum alloy using stirring the localized semisolid zone during butt-joining is developed.Since the heat conductivity of this alloy is very high, the accurate controlling of temperature during joining must be considered.A gas heating system was used to heat up the nitrogen gas up to the required temperature.A dried and free oxygen gas was prepared when a stream of nitrogen gas could pass closely around a hot element.Hot and pure nitrogen gas flow through a precise ceramic nozzle was used to create a localized semisolid pool.At this stage a fine stirrer was introduced into the weld seam in order to mix the two sides into a single uniform joint.Substrates were moved in direction of joint line by a small trolley to avoid the deviation of nozzle from the joint line and its distance and angle from the substrate.A fixture system was used to hold two substrates together on the trolley.A narrow hot plate was located on the trolley to heat up the joint line due to high heat conductivity of aluminum.Effect of gas temperature was investigated on the microstructure and mechanical properties of weld seam.Results showed that increase in temperature promoted the final welding properties, and also at liquid fractions less than 50% joining was not fully practical.The best mechanical properties were achieved with liquid fraction of about 70%.展开更多
A new method for producing semisolid slurry, annular electromagnetic stirring (AEMS), to refine and spheroidize grains was exploited. Experimental work was undertaken to investigate the effects of cooling rate, stir...A new method for producing semisolid slurry, annular electromagnetic stirring (AEMS), to refine and spheroidize grains was exploited. Experimental work was undertaken to investigate the effects of cooling rate, stirring power and stirring time on the solidification behavior of A357 alloy using A-EMS. It was found that increasing the cooling rate and stirring power gave rise to substantial grain refinement, which could be attributed to the increase of effective nucleation rate caused by the extremely uniform temperature and composition fields in the bulk liquid during the initial stage of solidification. Results showed that a fully grain refined spherical structure could be obtained using proper processing conditions within 10 s.展开更多
An industrial plant trial for optimizing the process parameters in a round billet continuous casting mold with electromagnetic stirring (M-EMS) was performed, in which the influences of stirring parameters with M-EM...An industrial plant trial for optimizing the process parameters in a round billet continuous casting mold with electromagnetic stirring (M-EMS) was performed, in which the influences of stirring parameters with M-EMS on the solidification macrostructure of high carbon steel were investigated. The results show that the billet quality is not well controlled under the condition of working current and frequency with EMS, in which the subsurface crack of grade 1.0-2.0 ups to 38.09%, the central pipe of grade 1.0-1.5 reaches to 14.28%, and the central porosity of grade 1.5 is 14.29%. The parameters of current 260 A and frequency 8 Hz as the final optimum scheme has a remarkable effect for improving the macroscopic quality of billet, in which the subsurface crack, central pipe and skin blowhole are all disappeared, and the central porosity and carbon segregation are also well improved.展开更多
Thixocasting requires manufacturing of billets with non-dendritic microstructure.Aluminum alloy A356 billets were produced by rheocasting in a mould placed inside a linear electromagnetic stirrer.Subsequent heat treat...Thixocasting requires manufacturing of billets with non-dendritic microstructure.Aluminum alloy A356 billets were produced by rheocasting in a mould placed inside a linear electromagnetic stirrer.Subsequent heat treatment was used to produce a transition from rosette to globular microstructure.The current and the duration of stirring were explored as control parameters.Simultaneous induction heating of the billet during stirring was quantified using experimentally determined thermal profiles.The effect of processing parameters on the dendrite fragmentation was discussed.Corresponding computational modeling of the process was performed using phase-field modeling of alloy solidification in order to gain insight into the process of morphological changes of a solid during this process.A non-isothermal alloy solidification model was used for simulations.The morphological evolution under such imposed thermal cycles was simulated and compared with experimentally determined one.Suitable scaling using the thermosolutal diffusion distances was used to overcome computational difficulties in quantitative comparison at system scale.The results were interpreted in the light of existing theories of microstructure refinement and globularisation.展开更多
Solidification cracking that occurs during continuous casting of 1Cr13 stainless steel was investigated with and without final elec- tromagnetic stirring (F-EMS). The results show that cracks initiates and propagate...Solidification cracking that occurs during continuous casting of 1Cr13 stainless steel was investigated with and without final elec- tromagnetic stirring (F-EMS). The results show that cracks initiates and propagates along the grain boundaries where the elements of carbon and sulfur are enriched. The final stirrer should be appropriately placed at a location that is 7.5 m away from the meniscus, and the appropri- ate thickness of the liquid core in the stirring zone is 50 ram. As a stirring current of 250 A is imposed, it can promote colurnnar-equiaxed transition, decrease the secondary dendrite arm spacing, and reduce the segregation of both carbon and sulfur. F-EMS can effectively de- crease the amount of cracks in 1Cr13 stainless steel.展开更多
According to the theory of alternating magnetohydrodynamics and magnetic boundary renewal method,mathematical models were proposed for electromagnetic stirring in secondary cooling region( SEMS) of slab caster. The ma...According to the theory of alternating magnetohydrodynamics and magnetic boundary renewal method,mathematical models were proposed for electromagnetic stirring in secondary cooling region( SEMS) of slab caster. The magnetic fields and flow fields of melt were simulated with SEMS. It's shown that the electromagnetic forces with inward and sidelong components produced by travel magnetic field at the wide faces of slab make the melt whirling in horizontal section,and the convection of the melt is strengthened obviously there. In addition,magnetic flux density attenuates from the edge to the center of slab,and the profile of the melt velocity along slab thickness in the center of the horizontal section takes a two-opposite-peak configuration. Ultimately,the stirring intensity and features are determined by the electromagnetic parameters,coil arrangement and stirring types.展开更多
An electromagnetic stirring process near liquidus temperature was designed and demonstrated experimentally to produce semi-solid slurry of AZ91 magnesium alloy,in order to avoid not only contamination from mechanical ...An electromagnetic stirring process near liquidus temperature was designed and demonstrated experimentally to produce semi-solid slurry of AZ91 magnesium alloy,in order to avoid not only contamination from mechanical stirring but also the inflammation of Mg alloy melt at elevated temperature. AZ91 alloy feedstock was isothermally heat treated at 600-610 for 20 min,and then stirred by electromagnetic field. Globular primary particle characteristic was observed optically in the castings. Mechanical properties were also studied.展开更多
A new and effective semisolid slurry preparation process with air-cooled stirring rod(ACSR)is reported,in which the compressed air is constantly injected into the inner cavity of a stirring rod to cool the melt.The sl...A new and effective semisolid slurry preparation process with air-cooled stirring rod(ACSR)is reported,in which the compressed air is constantly injected into the inner cavity of a stirring rod to cool the melt.The slurry of a newly developed high thermal conductivity Al?8Si alloy was prepared,and thin-wall heat dissipation shells were produced by the ACSR process combined with a HPDC machine.The effects of the air flow on the morphology ofα1-Al particles,mechanical properties and thermal conductivity of rheo-HPDC samples were studied.The results show that the excellent slurry of the alloy could be obtained with the air flow exceeding3L/s.Rheo-HPDC samples that were produced with the air flow of5L/s had the maximum UTS,YS,elongation,hardness and thermal conductivity of261MPa,124MPa,4.9%,HV99and153W/(m·K),respectively.Rheo-HPDC samples show improved properties compared to those formed by HPDC,and the increasing rates of UTS,YS,elongation,hardness and thermal conductivity were20%,15%,88%,13%and10%,respectively.展开更多
The 6351 wrought aluminum alloy and K2TiF6-CaF2-LiCl components were selected as raw materials to fabricate in situ Al3Ti particulate reinforced aluminum alloy at 720℃via direct melt reaction method with electromagne...The 6351 wrought aluminum alloy and K2TiF6-CaF2-LiCl components were selected as raw materials to fabricate in situ Al3Ti particulate reinforced aluminum alloy at 720℃via direct melt reaction method with electromagnetic stirring(EMS).CaF2 and LiCl acted as fluxes to lower the reaction temperature of the system.It is shown that the electromagnetic stirring and fluxes accelerate the emulsion process of K2TiF6.Optical microscopy,scanning electron microscopy,transmission electron microscopy and energy dispersive spectrum were utilized to analyze the microstructure and components of composites.Compared to composites fabricated without EMS and fluxes,the sizes of endogenetic Al3Ti are refined from 10-15μm to 2-4μm,which are often accompanied with silicon element.The morphology of Al3Ti or Al3TiSi0.22 exhibits triangle,quadrilateral and other clumpy patterns. Because of the Ca elements from CaF2,the sizes of Mg2Si decrease from 8-10μm to 1-2μm due to the formation of Ca2Si.展开更多
The electromagnetic direct chill (EMDC) casting process is a welt-established production route for aluminum alloy ingot, however, the skin effect restricts the casting diameter. In order to avoid this problem, annul...The electromagnetic direct chill (EMDC) casting process is a welt-established production route for aluminum alloy ingot, however, the skin effect restricts the casting diameter. In order to avoid this problem, annulus electromagnetic direct chill (A-EMDC) casting process has been developed. A three-dimension finite element computational model of A-EMDC casting process was established by using ANSYS Magnetic-Nodal programs and FLOTRAN CFD programs. Microstruetures of A-EMDC casting semi-solid Al-6Si-3Cu-Mg alloy billets were investigated. Two pairs of vortexes occur within the crystallizer with opposite direction in A-EMDC. The annulus gap is advantageous to increasing circulate flow, reducing the temperature gradient as well as shallowing liquid sump depth. The microstructure obtained by A-EMDC is globular or rosette-like, and the microstructure is homogeneous in the billet.展开更多
Ultra fine grinding of the plant tailings of a refractory silver ore was studied using a laboratory type vertical stirred media mill. Preliminary tests confirmed that ultra fine grinding substantially improves the ext...Ultra fine grinding of the plant tailings of a refractory silver ore was studied using a laboratory type vertical stirred media mill. Preliminary tests confirmed that ultra fine grinding substantially improves the extraction of silver from the tailings in cyanide leaching (i.e. 36% Ag extraction rate from the as-received tailings with d80 of 100 μm, c.f. 84% extraction rate after ultra fine grinding of the tailings with ds0 of 1.2 pro). In the ultra fine grinding tests, the effects of ball diameter (2-4.5 mm), stirring speed (200-800 r/m/n) and ball charge ratio (50%-80%) on the fineness of grind (ds0, ~tm) were investigated through a Box-Behnken design. Increasing stirrer speed and ball charge ratio decreased fineness of grind while larger balls resulted in the coarser products. The tests demonstrated that a fineness of grind less than 5 μm can be achieved under suitable conditions. Analysis of stress intensity indicated an optimum range of stress intensity of (0.8-2)× 10^- 3 μm for all power inputs.展开更多
The semisolid AlSi7Mg alloy slurry with large capacity was prepared by low superheat pouring and week traveling-wave electromagnetic stirring. The effects of electromagnetic stirring power and frequency on the shape a...The semisolid AlSi7Mg alloy slurry with large capacity was prepared by low superheat pouring and week traveling-wave electromagnetic stirring. The effects of electromagnetic stirring power and frequency on the shape and distribution of primary α-A1 grains in the AlSi7Mg alloy slurry were discussed. The experimental results show that the AlSi7Mg alloy slurry with fine and spherical primary α-A1 grains distributed homogeneously can be obtained. Under the condition of low superheat pouring and week traveling-wave electromagnetic stirring, when the pouring temperature is 630℃, raising the stirring power or frequency appropriately can gain a better shape of primary α-Al grains; but if the stirring power or frequency is increased to a certain value (1.72 kW or10 Hz), the shape of primary α-A1 grains cannot be obviously improved and spherical primary α-Al grains distributed homogeneously can be still obtained.展开更多
基金financially supported by the National Key R&D Projects(No.2021YFB3702000)the Regional Company Projects in Ansteel Beijing Research Institute(No.2022BJB07GF&No.2022BJB-13GF)。
文摘Electromagnetic stirring is one of the widely applied techniques to modify the quality of casting billets.Different from conventional rotate stirring,the helical stirring is more professional in assisting multi-dimensional flow of molten metal and eliminating solidification defects.In this study,the single-winding helical stirring(SWHS)was introduced,offering advantages such as smaller volume and lower electromagnetic shielding compared to traditional helical stirring methods.Following a comprehensive numerical simulation,the stirring parameters of SWHS were adjusted to yoke inclination angle of 43°and frequency of 12 Hz.The higher electromagnetic force and flow velocity in drawing direction,as well as the lower temperature gradient induced by the SWHS,are positive factors for homogeneous solidification of billet.The experimental results on Al-8%Si alloy and 0.4%C-1.1%Mn steel demonstrate that compared to rotate stirring,the SWHS process can induce better billet quality and is more effective in accelerating the equiaxed expansion and reducing element segregation.The SWHS process can enhance the equiaxed ratio of the billet by 58.3%and reduce segregation degree of carbon element by 10.97%.Consequently,SWHS holds great promise as a potential approach for improving the quality of continuous casting billets.
基金Projects (50974035,51074047) supported by the National Natural Science Foundation of ChinaProject (20090407) supported by the Doctoral Fund of Ministry of Education,ChinaProject (200921007) supported by Liaoning Key Science and Technology,China
文摘In gas injection refining processes,wide dispersion of small bubbles in the bath is indispensable for high refining efficiency.Eccentric mechanical stirring with unidirectional impeller rotation was tested using a water model for pursuing better bubble disintegration and dispersion.Effects of various factors on bubble disintegration and dispersion were investigated.These factors were stirring mode,eccentricity and rotation speed,nozzle structure,nozzle immersion depth,and gas flow rate.Gas injection from a nozzle at the end of the impeller shaft and from an immersed lance was studied.Under eccentric stirring,a vortex was formed away from the shaft.Small bubbles were produced in the strong turbulence or high shear stress field near the rotating impeller and moved in the direction to the vortex keeping up with the macroscopic flow induced by the mechanical stirring.Thus small bubbles could disperse widely in the bath under eccentric stirring with unidirectional rotation.
基金The work was supported by the National Hitech Research Foundation of China under grant No. G2002AA336080 by the National Natural Science Foundation of China under grant No. 50374012.
文摘The effects of pouring temperature, short electromagnetic stirring with low strength and then soaking treatment on the microstructure of AISi7Mg alloy were investigated. The results show that if AlSi7Mg alloy is poured at 630 or 650℃ and meanwhile stirred by an electromagnetic field at a low power for a short time, the pouring process can be easily controlled and most solidified primary α-Al grains become spherical and only a few of them are rosette-like. Weak electromagnetic stirring makes the temperature field more homogeneous and makes the primary α-Al grains disperse in a larger region, which leads to the spherical microstructures of primary α-Al grains. When the AISi7Mg alloy is soaked or reheated at the semisolid state, the primary α-Al grains ripen further and they become more spherical, which is favorable to the semi-solid forming of AlSi7Mg alloy.
基金The project was financially supported by the Hi-tech Research and Development Program of China (No. G2002AA336080) and the National Natural Science Foundation of China (No. 50374012)
文摘The semi-solid slurry of a hypoeutectic Al-Si alloy was manufactured by low superheat pouring and weak electromagnetic stirring. The effects of pouting temperature and stirring power on the semi-solid slurry were investigated. The results indicated that the semi-solid slurry to satisfy rheocasting can be manufactured by low superheat pouring and weak electromagnetic stirring. The pouring temperature (or superheat) and the stirring power remarkably affected the morphology of primary α-Al and the size of primary α-Al, and there is no obvious effect of stirring time on primary α-Al. Compared with the samples made by low superheat pouring with no stirring, the nucleation rate, particle morphology and grain size of primary α-Al in A356 were markedly improved by low superheat pouring and weak electromagnetic stirring. On the condition of weak electromagnetic stirring, the pouring temperature with low superheat can be suitably raised to reach the effectiveness obtained from the lower pouring temperature without stirring.
文摘To investigate the possibility of substituting the mechanical stirring system with electromagnetic stirring (EMS) system for aluminum rheo die-casting, the EMS under the different stirring cooling conditions was carried out. It was found that in the early period of solidification, the dendrite breakages led to a fine primary phase. When dendrites grew coarsely, the effect of ripening on grain size overwhelmed that of dendrite breakage. It was also found that the high cooling rate favored large nucleation rate, and led to a fine primary phase. But high cooling rate also made the growth rate of the dendrite arm, which prevented the dendrite arm from being sheared off. Therefore there were a suitable stirring time and suitable cooling rate to obtain the best rheo die-casting structure. Qualified semisolid A356 aluminum alloy was successfully manufactured with short time EMS.
基金The paper is supported by the Hi-tech Research and Develop-ment Program of China (Authorized No.: G2002AA336080), andthe National Natural Science Foundation of China (AuthorizedNo.: 50374012).
文摘The semi-solid slurry of hypoeutectic Al-Si alloy was manufactured by low superheat pouring and weak electromagnetic stirring. The effects of pouring temperature and stirring power on the semi-solid slurry making process were investigated. The results indicate that the semi-solid slurry to satisfy rheocasting requirement can be made by a combination of low superheat pouring and weak electromagnetic stirring. The pouring temperature (or superheat) and the stirring power significantly affect the morphology and the size of primary α-Al, while there is no obvious effect of the stirring time on primary α-Al. Compared with the samples made by low superheat pouring without stirring, the nucleation rate, particle morphology and grain size of primary α-Al in A356 Al alloy are markedly improved by a process of applying both low superheat pouring and weak electromagnetic stirring. Under the condition of weak electromagnetic stirring applied, the pouring temperature with low superheat can be equivalently to reach the effectiveness obtained from the even lower pouring temperature without stirring.
基金supported by the Fundamental Research Funds for the Central Universities (No. 2019XKQYMS45)。
文摘Physical upgrading of graphite is typically achieved with many stages of grinding and flotation to produce a concentrate with approximately 95% carbon grade.An innovative grinding and column flotation process has been developed for efficient graphite upgrading to substantially simplify the process flowsheet and reduce operating costs.In this process,a high-pressure grinding roller(HPGR) and a stirred mill were employed as primary comminution techniques and a nanobubble flotation column as a key separation process.The results obtained with a crystalline flake graphite sample with a carbon grade of 11.15% show that the novel process can produce a concentrate with 94.82% carbon grade and 97.89% recovery from an open circuit of one rougher and two cleaner flotation stages.Scanning electron microscope(SEM)microphotographs indicate that HPGR offers the advantage of more effective protection of graphite flakes during crushing.Grinding test results show that stirred mill could not only protect graphite flakes but also promote the efficient liberation of graphite.Compared with the traditional flotation process,nanobubble flotation can effectively recover ultrafine graphite.The new process possesses a number of important advantages over the traditional method,including substantially higher graphite recovery,greatly simplified process flowsheet,better protection of flake size,reduced reagent consumption and process costs,etc.
基金financially supported by National High Technical Research and Development Program of China(No.G2002AA336080)National Natural Science Foundation of China(No.50374012)Natural Science Foundation of Jiangxi Province(No.0650047).
文摘The semi-solid slurry of A356 alloy, which is grain-refined by Al-Ti-B master alloy, is prepared by low superheat pouring and slight electromagnetic stirring. The effects of grain refining on the morphology and the grain size of the primary α phase in the slurry manufactured are researched. The results indicate that the slurry with particle-like and rosette-like primary α phases can be prepared by low superheat pouring and slight electromagnetic stirring from liquid A356 alloy grain-refined, in which the pouring temperature can be suitably raised. Compared with the A356 samples without grain refining, the grain size and particle morphology of primary α phase as well as the distribution of the grain with particle-like or rosette-like along radial in the ingot in A356 are markedly improved by grain refining.
文摘A method to reach the globular weld structure of A356 aluminum alloy using stirring the localized semisolid zone during butt-joining is developed.Since the heat conductivity of this alloy is very high, the accurate controlling of temperature during joining must be considered.A gas heating system was used to heat up the nitrogen gas up to the required temperature.A dried and free oxygen gas was prepared when a stream of nitrogen gas could pass closely around a hot element.Hot and pure nitrogen gas flow through a precise ceramic nozzle was used to create a localized semisolid pool.At this stage a fine stirrer was introduced into the weld seam in order to mix the two sides into a single uniform joint.Substrates were moved in direction of joint line by a small trolley to avoid the deviation of nozzle from the joint line and its distance and angle from the substrate.A fixture system was used to hold two substrates together on the trolley.A narrow hot plate was located on the trolley to heat up the joint line due to high heat conductivity of aluminum.Effect of gas temperature was investigated on the microstructure and mechanical properties of weld seam.Results showed that increase in temperature promoted the final welding properties, and also at liquid fractions less than 50% joining was not fully practical.The best mechanical properties were achieved with liquid fraction of about 70%.
基金supported by National High Technical Research and Development Program of China (No.2009AA03Z534)National Basic Research Program of China (No.2006CB605203)
文摘A new method for producing semisolid slurry, annular electromagnetic stirring (AEMS), to refine and spheroidize grains was exploited. Experimental work was undertaken to investigate the effects of cooling rate, stirring power and stirring time on the solidification behavior of A357 alloy using A-EMS. It was found that increasing the cooling rate and stirring power gave rise to substantial grain refinement, which could be attributed to the increase of effective nucleation rate caused by the extremely uniform temperature and composition fields in the bulk liquid during the initial stage of solidification. Results showed that a fully grain refined spherical structure could be obtained using proper processing conditions within 10 s.
基金supported by the Program for New Century Excellent Talents in University from the Ministry of Education of China (No.NCET-04-0285)
文摘An industrial plant trial for optimizing the process parameters in a round billet continuous casting mold with electromagnetic stirring (M-EMS) was performed, in which the influences of stirring parameters with M-EMS on the solidification macrostructure of high carbon steel were investigated. The results show that the billet quality is not well controlled under the condition of working current and frequency with EMS, in which the subsurface crack of grade 1.0-2.0 ups to 38.09%, the central pipe of grade 1.0-1.5 reaches to 14.28%, and the central porosity of grade 1.5 is 14.29%. The parameters of current 260 A and frequency 8 Hz as the final optimum scheme has a remarkable effect for improving the macroscopic quality of billet, in which the subsurface crack, central pipe and skin blowhole are all disappeared, and the central porosity and carbon segregation are also well improved.
文摘Thixocasting requires manufacturing of billets with non-dendritic microstructure.Aluminum alloy A356 billets were produced by rheocasting in a mould placed inside a linear electromagnetic stirrer.Subsequent heat treatment was used to produce a transition from rosette to globular microstructure.The current and the duration of stirring were explored as control parameters.Simultaneous induction heating of the billet during stirring was quantified using experimentally determined thermal profiles.The effect of processing parameters on the dendrite fragmentation was discussed.Corresponding computational modeling of the process was performed using phase-field modeling of alloy solidification in order to gain insight into the process of morphological changes of a solid during this process.A non-isothermal alloy solidification model was used for simulations.The morphological evolution under such imposed thermal cycles was simulated and compared with experimentally determined one.Suitable scaling using the thermosolutal diffusion distances was used to overcome computational difficulties in quantitative comparison at system scale.The results were interpreted in the light of existing theories of microstructure refinement and globularisation.
基金financially supported by the National Natural Science Foundation of China (No. 50834009)the Key Project of the Ministry of Education of China (No. 311014)the 111 Project of China (No. B07015)
文摘Solidification cracking that occurs during continuous casting of 1Cr13 stainless steel was investigated with and without final elec- tromagnetic stirring (F-EMS). The results show that cracks initiates and propagates along the grain boundaries where the elements of carbon and sulfur are enriched. The final stirrer should be appropriately placed at a location that is 7.5 m away from the meniscus, and the appropri- ate thickness of the liquid core in the stirring zone is 50 ram. As a stirring current of 250 A is imposed, it can promote colurnnar-equiaxed transition, decrease the secondary dendrite arm spacing, and reduce the segregation of both carbon and sulfur. F-EMS can effectively de- crease the amount of cracks in 1Cr13 stainless steel.
基金Item Sponsored by National Key Fundamental Research Development Project of China(G1998061510)National High Technology Research and Development Project of China(2001AA337040)
文摘According to the theory of alternating magnetohydrodynamics and magnetic boundary renewal method,mathematical models were proposed for electromagnetic stirring in secondary cooling region( SEMS) of slab caster. The magnetic fields and flow fields of melt were simulated with SEMS. It's shown that the electromagnetic forces with inward and sidelong components produced by travel magnetic field at the wide faces of slab make the melt whirling in horizontal section,and the convection of the melt is strengthened obviously there. In addition,magnetic flux density attenuates from the edge to the center of slab,and the profile of the melt velocity along slab thickness in the center of the horizontal section takes a two-opposite-peak configuration. Ultimately,the stirring intensity and features are determined by the electromagnetic parameters,coil arrangement and stirring types.
基金The project was supported by the National Natural Science Foundation of China (No.50374014).
文摘An electromagnetic stirring process near liquidus temperature was designed and demonstrated experimentally to produce semi-solid slurry of AZ91 magnesium alloy,in order to avoid not only contamination from mechanical stirring but also the inflammation of Mg alloy melt at elevated temperature. AZ91 alloy feedstock was isothermally heat treated at 600-610 for 20 min,and then stirred by electromagnetic field. Globular primary particle characteristic was observed optically in the castings. Mechanical properties were also studied.
基金Project (2013B091300016) supported by the Department of Science and Technology of Guangdong Province,China
文摘A new and effective semisolid slurry preparation process with air-cooled stirring rod(ACSR)is reported,in which the compressed air is constantly injected into the inner cavity of a stirring rod to cool the melt.The slurry of a newly developed high thermal conductivity Al?8Si alloy was prepared,and thin-wall heat dissipation shells were produced by the ACSR process combined with a HPDC machine.The effects of the air flow on the morphology ofα1-Al particles,mechanical properties and thermal conductivity of rheo-HPDC samples were studied.The results show that the excellent slurry of the alloy could be obtained with the air flow exceeding3L/s.Rheo-HPDC samples that were produced with the air flow of5L/s had the maximum UTS,YS,elongation,hardness and thermal conductivity of261MPa,124MPa,4.9%,HV99and153W/(m·K),respectively.Rheo-HPDC samples show improved properties compared to those formed by HPDC,and the increasing rates of UTS,YS,elongation,hardness and thermal conductivity were20%,15%,88%,13%and10%,respectively.
基金Project(2007AA03Z548)supported by the National High-Tech Research and Development Program of ChinaProject(207038)supported by the Key Program of Ministry of Education of China+3 种基金Project(06-D-021)supported by the Talents Peak in Six Key Fields of Jiangsu Province in ChinaProject(07JDG084)supported by the Technical Enablement Foundation for the Super Special Talents of Jiangsu UniversityProject(20071108)supported by the Technical Enablement Foundation of Ministry of Education for the Returned ScholarsProject(20060299006)supported by the PhD Programs Foundation of Ministry of Education of China
文摘The 6351 wrought aluminum alloy and K2TiF6-CaF2-LiCl components were selected as raw materials to fabricate in situ Al3Ti particulate reinforced aluminum alloy at 720℃via direct melt reaction method with electromagnetic stirring(EMS).CaF2 and LiCl acted as fluxes to lower the reaction temperature of the system.It is shown that the electromagnetic stirring and fluxes accelerate the emulsion process of K2TiF6.Optical microscopy,scanning electron microscopy,transmission electron microscopy and energy dispersive spectrum were utilized to analyze the microstructure and components of composites.Compared to composites fabricated without EMS and fluxes,the sizes of endogenetic Al3Ti are refined from 10-15μm to 2-4μm,which are often accompanied with silicon element.The morphology of Al3Ti or Al3TiSi0.22 exhibits triangle,quadrilateral and other clumpy patterns. Because of the Ca elements from CaF2,the sizes of Mg2Si decrease from 8-10μm to 1-2μm due to the formation of Ca2Si.
基金Project(2009AA03Z534) supported by the National Hi-tech Research and Development Program of ChinaProject(2006CB605203) supported by the National Basic Research Program of China
文摘The electromagnetic direct chill (EMDC) casting process is a welt-established production route for aluminum alloy ingot, however, the skin effect restricts the casting diameter. In order to avoid this problem, annulus electromagnetic direct chill (A-EMDC) casting process has been developed. A three-dimension finite element computational model of A-EMDC casting process was established by using ANSYS Magnetic-Nodal programs and FLOTRAN CFD programs. Microstruetures of A-EMDC casting semi-solid Al-6Si-3Cu-Mg alloy billets were investigated. Two pairs of vortexes occur within the crystallizer with opposite direction in A-EMDC. The annulus gap is advantageous to increasing circulate flow, reducing the temperature gradient as well as shallowing liquid sump depth. The microstructure obtained by A-EMDC is globular or rosette-like, and the microstructure is homogeneous in the billet.
文摘Ultra fine grinding of the plant tailings of a refractory silver ore was studied using a laboratory type vertical stirred media mill. Preliminary tests confirmed that ultra fine grinding substantially improves the extraction of silver from the tailings in cyanide leaching (i.e. 36% Ag extraction rate from the as-received tailings with d80 of 100 μm, c.f. 84% extraction rate after ultra fine grinding of the tailings with ds0 of 1.2 pro). In the ultra fine grinding tests, the effects of ball diameter (2-4.5 mm), stirring speed (200-800 r/m/n) and ball charge ratio (50%-80%) on the fineness of grind (ds0, ~tm) were investigated through a Box-Behnken design. Increasing stirrer speed and ball charge ratio decreased fineness of grind while larger balls resulted in the coarser products. The tests demonstrated that a fineness of grind less than 5 μm can be achieved under suitable conditions. Analysis of stress intensity indicated an optimum range of stress intensity of (0.8-2)× 10^- 3 μm for all power inputs.
基金supported by the National High-Tech Research and Development Program of China (No.2006AA03Z115)the National Basic Research Priorities Program of China (No.2006CB605203)the National Natural Science Foundation of China (No.50374012)
文摘The semisolid AlSi7Mg alloy slurry with large capacity was prepared by low superheat pouring and week traveling-wave electromagnetic stirring. The effects of electromagnetic stirring power and frequency on the shape and distribution of primary α-A1 grains in the AlSi7Mg alloy slurry were discussed. The experimental results show that the AlSi7Mg alloy slurry with fine and spherical primary α-A1 grains distributed homogeneously can be obtained. Under the condition of low superheat pouring and week traveling-wave electromagnetic stirring, when the pouring temperature is 630℃, raising the stirring power or frequency appropriately can gain a better shape of primary α-Al grains; but if the stirring power or frequency is increased to a certain value (1.72 kW or10 Hz), the shape of primary α-A1 grains cannot be obviously improved and spherical primary α-Al grains distributed homogeneously can be still obtained.