期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Experimental Study on Aqueous Phase Entrainment in a Mixer-settler with Double Stirring Mode 被引量:6
1
作者 Wang Shuchan Zhang Tingan +2 位作者 Zhao Qiuyue Liu Yan Wu Qiuyang 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2013年第2期59-62,共4页
The mixer-settler is a core device of solvent extraction for separating rare earth elements. There are some adverse effects like high rare earth accumulation and poor production efficiency during industrial production... The mixer-settler is a core device of solvent extraction for separating rare earth elements. There are some adverse effects like high rare earth accumulation and poor production efficiency during industrial production. Current researches usually focus on changing the structure of the mixer-settler without making a breakthrough towards gravity clarification. In this paper, in order to improve the efficiency of clarification, a mixer-settler with double stirring mode was designed and manufactured by adding a stirring device in the settler after reducing the volume of the settler. The innovation of this research involves adopting the ultraviolet-visible spectrophotometer to investigate the quantity of aqueous phase entrainment at the settler outlet in order to measure the clarification degree. Experimental results show that the clarification effect with stirring is better than that without stirring. The clarification effect is ameliorated as the stirring speed increases. Generally, the clarification effect shows a best condition when the offset distance is 12.5 cm, making the phase entrainment reduced to less than 0.1%. When the clearance over the tank bottom is 7 cm and 10 cm, respectively, the quantity of aqueous phase entrainment is better than the case with a clearance of 4 cm. The results show that the stirring paddle close to the mixed phase zone can better promote the two-phase separation. 展开更多
关键词 MIXER-SETTLER aqueous phase entrainment stirring speed clearance over the tank bottom offset distance
下载PDF
Computational fluid dynamics simulation and experimental analysis of ultrafine powder suspension
2
作者 Wang-Chao Wu Jian Cui +2 位作者 Hao Jiang Hai-Bo Jiang Chun-Zhong Li 《Rare Metals》 SCIE EI CAS CSCD 2020年第7期850-860,共11页
The suspension characteristics of ultrafine powder slurry in the stirred vessel were simulated by using computational fluid dynamics.The results show that the Rushton disk turbine impeller is more conducive to maintai... The suspension characteristics of ultrafine powder slurry in the stirred vessel were simulated by using computational fluid dynamics.The results show that the Rushton disk turbine impeller is more conducive to maintaining suspended homogeneity and circulation of slurry compared with the pitch blade turbine pumping up impeller and the pitch blade turbine pumping down impeller.And the increase in stirring speed enhances turbulent fluctuation and anisotropic velocity of the fluid at the cost of more power consumption,which improves dispersibility and suspensibility of the particles.Meanwhile,the change of impeller clearance has a weak influence on the flow pattern,and the impeller clearance of 0.32T(T is the diameter of the bottom of the reactor)can achieve better dispersivity and suspensibility of the particles with lower power consumption and larger axial velocity.The experiments of surface coating modification of ultrafine titanium dioxide(TiO2)were carried out under the same conditions for those of the simulation system.The surface film morphology and photocatalytic properties of the modified TiO2 were analyzed,and the obtained data are well consistent with the simulation results. 展开更多
关键词 Computational fluid dynamics simulation Ultrafine powder slurry Suspension quality Impeller type stirring speed Impeller clearance
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部