Interference management is one of the most important issues in the device-to-device(D2D)-enabled heterogeneous cellular networks(HetCNets)due to the coexistence of massive cellular and D2D devices in which D2D devices...Interference management is one of the most important issues in the device-to-device(D2D)-enabled heterogeneous cellular networks(HetCNets)due to the coexistence of massive cellular and D2D devices in which D2D devices reuse the cellular spectrum.To alleviate the interference,an efficient interference management way is to set exclusion zones around the cellular receivers.In this paper,we adopt a stochastic geometry approach to analyze the outage probabilities of cellular and D2D users in the D2D-enabled HetCNets.The main difficulties contain three aspects:1)how to model the location randomness of base stations,cellular and D2D users in practical networks;2)how to capture the randomness and interrelation of cellular and D2D transmissions due to the existence of random exclusion zones;3)how to characterize the different types of interference and their impacts on the outage probabilities of cellular and D2D users.We then run extensive Monte-Carlo simulations which manifest that our theoretical model is very accurate.展开更多
Using a modified C D function and stochastic frontier model, the paper analyzed China's cotton yield capacity and found that the yield and technical efficiency of China's cotton planting system can be increas...Using a modified C D function and stochastic frontier model, the paper analyzed China's cotton yield capacity and found that the yield and technical efficiency of China's cotton planting system can be increased by the use of genetically modified (GM) varieties.展开更多
A new horn failure mechanism was constructed for tunnel faces in the soft rock mass by means of the logarithmic spiral curve. The seismic action was incorporated into the horn failure mechanism using the pseudo-static...A new horn failure mechanism was constructed for tunnel faces in the soft rock mass by means of the logarithmic spiral curve. The seismic action was incorporated into the horn failure mechanism using the pseudo-static method. Considering the randomness of rock mass parameters and loads, a three-dimensional (3D) stochastic collapse model was established. Reliability analysis of seismic stability of tunnel faces was presented via the kinematical approach and the response surface method. The results show that, the reliability of tunnel faces is significantly affected by the supporting pressure, geological strength index, uniaxial compressive strength, rock bulk density and seismic forces. It is worth noting that, if the effect of seismic force was not considered, the stability of tunnel faces would be obviously overestimated. However, the correlation between horizontal and vertical seismic forces can be ignored under the condition of low calculation accuracy.展开更多
Sufficient condition for stochastic unifrom stability of a neutral stochastic functional differential equation is given, especially, new techniques are developed to cope with the neutral delay case, we obtained the su...Sufficient condition for stochastic unifrom stability of a neutral stochastic functional differential equation is given, especially, new techniques are developed to cope with the neutral delay case, we obtained the sufficient condition for asymptotic stability of neutral stochastic differential delay equations. Due to the new techniques developed in this paper, the results obtained arc very general and useful. The theory developed here gives a unified treatment for various asymptotic estimates e.g. exponential and polynomial bounds.展开更多
A 3D stochastic modeling was carried out to simulate the dendritic grains during solidification of aluminum alloys, including time-dependent calculations for temperature field, solute redistribution in liquid, curvatu...A 3D stochastic modeling was carried out to simulate the dendritic grains during solidification of aluminum alloys, including time-dependent calculations for temperature field, solute redistribution in liquid, curvature of the dendritic tip, and growth anisotropy. The nucleation process was treated by continuous nucleation. A 3D simplified grain shape model was established to represent the equiaxed dendritic grain. Based on the Cellular Automaton method, a grain growth model was proposed to capture the neighbor cells of the nucleated cell. During growing, each grain continues to capture the nearest neighbor cells to form the final shape. When a neighbor cell was captured by other grains, the grain growth along this direction would be stopped. Three-dimensional calculations were performed to simulate the evolution of dendritic grain. In order to verify the modeling results, the predictions were compared with the observation on samples cast in the sand mold and the metal mold.展开更多
The 2D generalized stochastic Ginzburg-Landau equation with additive noise is considered. The compactness of the random dynamical system is established with a priori estimate method, showing that the random dynamical ...The 2D generalized stochastic Ginzburg-Landau equation with additive noise is considered. The compactness of the random dynamical system is established with a priori estimate method, showing that the random dynamical system possesses a random attractor in H^1 0.展开更多
This paper introduces analytical and numerical solutions of the nonlinear Langevin’s equation under square nonlinearity with stochastic non-homogeneity. The solution is obtained by using the Wiener-Hermite expansion ...This paper introduces analytical and numerical solutions of the nonlinear Langevin’s equation under square nonlinearity with stochastic non-homogeneity. The solution is obtained by using the Wiener-Hermite expansion with perturbation (WHEP) technique, and the results are compared with those of Picard iterations and the homotopy perturbation method (HPM). The WHEP technique is used to obtain up to fourth order approximation for different number of corrections. The mean and variance of the solution are obtained and compared among the different methods, and some parametric studies are done by using Matlab.展开更多
In this paper, the problem of optimum allocation of repairable and replaceable components in a system is formulated as a Bi-objective stochastic non linear programming problem. The system maintenance time and cost are...In this paper, the problem of optimum allocation of repairable and replaceable components in a system is formulated as a Bi-objective stochastic non linear programming problem. The system maintenance time and cost are random variable and has gamma and normal distribution respectively. A Bi-criteria optimization technique, weighted Tchebycheff is used to obtain the optimum allocation for a system. A numerical example is also presented to illustrate the computational details.展开更多
Assume that D is a nuclear space and D' its strong topological dual space. Let {B_t}t∈(0,∞) be a Wiener D'-process. In this paper, the real-valued and D'-valued weak stochastic integral with respect to {...Assume that D is a nuclear space and D' its strong topological dual space. Let {B_t}t∈(0,∞) be a Wiener D'-process. In this paper, the real-valued and D'-valued weak stochastic integral with respect to {B_t} are established.AMS Subject Classification. 60H05.展开更多
The goal of screening tests for breast cancer is early detection and treatment with a consequent reduction in mortality caused by the disease. Screening tests, however, might produce misleading diagnoses and potential...The goal of screening tests for breast cancer is early detection and treatment with a consequent reduction in mortality caused by the disease. Screening tests, however, might produce misleading diagnoses and potentially significant emotional, financial and health costs. The effectiveness of a breast screening program has effects on the quality of life of the target population. Even if the screening units regularly attain coverage targets, it remains essential to ensure that women receive the same high standard of service wherever they live. In order to assess the relative efficiency of individual screening units we use stochastic D.E.A. models, which can be used as reliable tools for external audit. The technique is tested on breast cancer screening data of two Italian regions.展开更多
This paper investigates the problem of seeking minimum of API (Auxiliary Performance Index) in parameters of Data Model instead of parameters of Adaptive Filter in order to avoid the phenomenon of over parameterizatio...This paper investigates the problem of seeking minimum of API (Auxiliary Performance Index) in parameters of Data Model instead of parameters of Adaptive Filter in order to avoid the phenomenon of over parameterization. This problem was stated by Semushin in [2]. The solution to the problem can be considered as the development of API approach to parameter identification in stochastic dynamic systems.展开更多
Comprehensive radiation characteristics of polarized antenna are crucial in creating practical channel coefficients for next generation wireless communication system designs.Being currently supported within3 D geometr...Comprehensive radiation characteristics of polarized antenna are crucial in creating practical channel coefficients for next generation wireless communication system designs.Being currently supported within3 D geometry-based stochastic channel models(GSCM),field patterns are technically obtained by chamber measurement(or by its best fitting).However,in some channel related performance analysis scenarios,design insight can be crystallized better by starting the derivations with theoretical co-polarization and cross-polarization components.Specifically,these two components are mathematically linked with field patterns through the proposed polarization projection algorithm.In this manuscript,we focus on revealing the transformation criterion of polarization states between the antenna plane and the propagation plane.In practice,it makes retrieving the field patterns by electromagnetic computation possible.Meanwhile,the impact imposed by distinct antenna orientations is geometrically illustrated and consequently incorporated into the proposed algorithm.This will further facilitate flexible performance evaluation of related radio transmission technologies.Our conclusions are verified by the closed-form expression of the dipole field pattern(via an analytical approach) and by chamber measurement results.Moreover,we find that its 2D degenerative case is aligned with the definitions in 3^(rd) generation partnership project(3GPP)technical report 25.996.The most obvious benefit of the proposed algorithm is to significantly reduce the cost on generating channel coefficients in GSCM simulation.展开更多
As gravity field, magnetic field, electric field and seismic wave field are all physical fields, their object function, reverse function and compound function are certainly infinite continuously differentiable functio...As gravity field, magnetic field, electric field and seismic wave field are all physical fields, their object function, reverse function and compound function are certainly infinite continuously differentiable functions which can be expanded into Taylor (Fourier) series within domain of definition and be further reduced into solving stochastic distribution function of series and statistic inference of optimal approximation. This is the basis of combined gravity-magnetic-electric-seismic inversion of stochastic modeling. It is an uncertainty modeling technology of combining gravity-magnetic-electric-seismic inversion built on the basis of separation of field and source gravity-magnetic difference-value (D-value) trend surface, taking distribution-independent fault system as its unit, depths of seismic and electric interfaces of interests as its corresponding bivariate compound reverse function of gravity-magnetic anomalies and using high order polynomial (high order trigonometric function) approximating to its series distribution. The difference from current dominant inversion techniques is that, first, it does not respectively create gravity-seismic, magnetic-seismic deterministic inversion model from theoretical model, but combines gravity-magnetic-electric-seismic stochastic inversion model from stochastic model; second, after the concept of equivalent geological body being introduced, using feature of independent variable of gravity-magnetic field functions, taking density and susceptibility related to gravity-magnetic function as default parameters of model, the deterministic model is established owing to better solution to the contradiction of difficulty in identifying strata and less test analytical data for density and susceptibility in newly explored area; third, under assumption of independent parent distribution, a real modeling by strata, the problem of difficult plane closure arising in profile modeling is avoided. This technology has richer and more detailed fault and strata information than sparse pattern seismic data in newly explored area, successfully inverses and plots structural map of Indosinian discontinuity in Hefei basin with combined gravity-magnetic-electric-seismic inversion. With development of high precision gravity-magnetic and overall geophysical technology, it is certain for introducing new methods of stochastic modeling and computational intelligence and promoting the development of combined gravity-magnetic-electric-seismic inversion to open a new substantial path.展开更多
After we modified raw data for anomalies, we conducted spectral analysis using the data. In the frequency, the spectrum is best described by a decaying exponential function. For this reason, stochastic models characte...After we modified raw data for anomalies, we conducted spectral analysis using the data. In the frequency, the spectrum is best described by a decaying exponential function. For this reason, stochastic models characterized by a spectrum attenuated according to a power law cannot be used to model precipitation anomaly. We introduced a new model, the e-model, which properly reproduces the spectrum of the precipitation anomaly. After using the data to infer the parameter values of the e-model, we used the e-model to generate synthetic daily precipitation time series. Comparison with recorded data shows a good agreement. This e-model resembles fractional Brown motion (fBm)/fractional Lévy motion (fLm), especially the spectral method. That is, we transform white noise Xt to the precipitation daily time series. Our analyses show that the frequency of extreme precipitation events is best described by a Lévy law and cannot be accounted with a Gaussian distribution.展开更多
基金This work is funded in part by the Science and Technology Development Fund,Macao SAR(Grant Nos.0093/2022/A2,0076/2022/A2 and 0008/2022/AGJ)in part by the National Nature Science Foundation of China(Grant No.61872452)+3 种基金in part by Special fund for Dongguan’s Rural Revitalization Strategy in 2021(Grant No.20211800400102)in part by Dongguan Special Commissioner Project(Grant No.20211800500182)in part by Guangdong-Dongguan Joint Fund for Basic and Applied Research of Guangdong Province(Grant No.2020A1515110162)in part by University Special Fund of Guangdong Provincial Department of Education(Grant No.2022ZDZX1073).
文摘Interference management is one of the most important issues in the device-to-device(D2D)-enabled heterogeneous cellular networks(HetCNets)due to the coexistence of massive cellular and D2D devices in which D2D devices reuse the cellular spectrum.To alleviate the interference,an efficient interference management way is to set exclusion zones around the cellular receivers.In this paper,we adopt a stochastic geometry approach to analyze the outage probabilities of cellular and D2D users in the D2D-enabled HetCNets.The main difficulties contain three aspects:1)how to model the location randomness of base stations,cellular and D2D users in practical networks;2)how to capture the randomness and interrelation of cellular and D2D transmissions due to the existence of random exclusion zones;3)how to characterize the different types of interference and their impacts on the outage probabilities of cellular and D2D users.We then run extensive Monte-Carlo simulations which manifest that our theoretical model is very accurate.
文摘Using a modified C D function and stochastic frontier model, the paper analyzed China's cotton yield capacity and found that the yield and technical efficiency of China's cotton planting system can be increased by the use of genetically modified (GM) varieties.
基金Projects(51804113,51434006,51874130)supported by the National Natural Science Foundation of ChinaProject(E51768)supported by the Doctoral Initiation Foundation of Hunan University of Science and Technology,China+1 种基金Project(E61610)supported by the Postdoctoral Research Foundation of Hunan University of Science and Technology,ChinaProject(E21734)supported by the Open Foundation of Work Safety Key Lab on Prevention and Control of Gas and Roof Disasters for Southern Coal Mines,China
文摘A new horn failure mechanism was constructed for tunnel faces in the soft rock mass by means of the logarithmic spiral curve. The seismic action was incorporated into the horn failure mechanism using the pseudo-static method. Considering the randomness of rock mass parameters and loads, a three-dimensional (3D) stochastic collapse model was established. Reliability analysis of seismic stability of tunnel faces was presented via the kinematical approach and the response surface method. The results show that, the reliability of tunnel faces is significantly affected by the supporting pressure, geological strength index, uniaxial compressive strength, rock bulk density and seismic forces. It is worth noting that, if the effect of seismic force was not considered, the stability of tunnel faces would be obviously overestimated. However, the correlation between horizontal and vertical seismic forces can be ignored under the condition of low calculation accuracy.
基金Supported by the National Natural Science Founda-tion of China (19531070) and the Major Project Foundation of HubeiProvince Education Department (2004Z001)
文摘Sufficient condition for stochastic unifrom stability of a neutral stochastic functional differential equation is given, especially, new techniques are developed to cope with the neutral delay case, we obtained the sufficient condition for asymptotic stability of neutral stochastic differential delay equations. Due to the new techniques developed in this paper, the results obtained arc very general and useful. The theory developed here gives a unified treatment for various asymptotic estimates e.g. exponential and polynomial bounds.
文摘A 3D stochastic modeling was carried out to simulate the dendritic grains during solidification of aluminum alloys, including time-dependent calculations for temperature field, solute redistribution in liquid, curvature of the dendritic tip, and growth anisotropy. The nucleation process was treated by continuous nucleation. A 3D simplified grain shape model was established to represent the equiaxed dendritic grain. Based on the Cellular Automaton method, a grain growth model was proposed to capture the neighbor cells of the nucleated cell. During growing, each grain continues to capture the nearest neighbor cells to form the final shape. When a neighbor cell was captured by other grains, the grain growth along this direction would be stopped. Three-dimensional calculations were performed to simulate the evolution of dendritic grain. In order to verify the modeling results, the predictions were compared with the observation on samples cast in the sand mold and the metal mold.
基金supported by the National Natural Science Foundation of China (No. 10661002)the NaturalScience Foundation of Guangxi (No. 0832065)the Excellent Talents Fund of Guangxi (No. 0825)
文摘The 2D generalized stochastic Ginzburg-Landau equation with additive noise is considered. The compactness of the random dynamical system is established with a priori estimate method, showing that the random dynamical system possesses a random attractor in H^1 0.
文摘This paper introduces analytical and numerical solutions of the nonlinear Langevin’s equation under square nonlinearity with stochastic non-homogeneity. The solution is obtained by using the Wiener-Hermite expansion with perturbation (WHEP) technique, and the results are compared with those of Picard iterations and the homotopy perturbation method (HPM). The WHEP technique is used to obtain up to fourth order approximation for different number of corrections. The mean and variance of the solution are obtained and compared among the different methods, and some parametric studies are done by using Matlab.
文摘In this paper, the problem of optimum allocation of repairable and replaceable components in a system is formulated as a Bi-objective stochastic non linear programming problem. The system maintenance time and cost are random variable and has gamma and normal distribution respectively. A Bi-criteria optimization technique, weighted Tchebycheff is used to obtain the optimum allocation for a system. A numerical example is also presented to illustrate the computational details.
文摘Assume that D is a nuclear space and D' its strong topological dual space. Let {B_t}t∈(0,∞) be a Wiener D'-process. In this paper, the real-valued and D'-valued weak stochastic integral with respect to {B_t} are established.AMS Subject Classification. 60H05.
文摘The goal of screening tests for breast cancer is early detection and treatment with a consequent reduction in mortality caused by the disease. Screening tests, however, might produce misleading diagnoses and potentially significant emotional, financial and health costs. The effectiveness of a breast screening program has effects on the quality of life of the target population. Even if the screening units regularly attain coverage targets, it remains essential to ensure that women receive the same high standard of service wherever they live. In order to assess the relative efficiency of individual screening units we use stochastic D.E.A. models, which can be used as reliable tools for external audit. The technique is tested on breast cancer screening data of two Italian regions.
文摘This paper investigates the problem of seeking minimum of API (Auxiliary Performance Index) in parameters of Data Model instead of parameters of Adaptive Filter in order to avoid the phenomenon of over parameterization. This problem was stated by Semushin in [2]. The solution to the problem can be considered as the development of API approach to parameter identification in stochastic dynamic systems.
基金supported in part by the Natural Science Basic Research Plan in Shaanxi Province(No.2015JQ6221,No. 2015JQ6259,No.2015JM6341)the Fundamental Research Funds for the Central Universities(No.JB140109)+8 种基金the National Natural Science Foundation of China(No. 61401321,No.61372067)the National Hightech R&D Program of China(No. 2014AA01A704,No.2015AA7124058)the National Basic Research Program of China(No.2014CB340206)the National Key Technology R&D Program of China(No. 2012BAH16B00)the Next Generation Internet Program of China(No.CNGI1203003)the Research Culture Funds of Xi'an University of Science and Technology(No.201357)the Open Project of State Key Laboratory of Integrated Service Networks(No.ISN1601)the Open Research Fund of National Mobile Communications Research Laboratory (No.2015D01)the Science and Technology R&D Program of Shaanxi Province(No. 2014KJXX-49)
文摘Comprehensive radiation characteristics of polarized antenna are crucial in creating practical channel coefficients for next generation wireless communication system designs.Being currently supported within3 D geometry-based stochastic channel models(GSCM),field patterns are technically obtained by chamber measurement(or by its best fitting).However,in some channel related performance analysis scenarios,design insight can be crystallized better by starting the derivations with theoretical co-polarization and cross-polarization components.Specifically,these two components are mathematically linked with field patterns through the proposed polarization projection algorithm.In this manuscript,we focus on revealing the transformation criterion of polarization states between the antenna plane and the propagation plane.In practice,it makes retrieving the field patterns by electromagnetic computation possible.Meanwhile,the impact imposed by distinct antenna orientations is geometrically illustrated and consequently incorporated into the proposed algorithm.This will further facilitate flexible performance evaluation of related radio transmission technologies.Our conclusions are verified by the closed-form expression of the dipole field pattern(via an analytical approach) and by chamber measurement results.Moreover,we find that its 2D degenerative case is aligned with the definitions in 3^(rd) generation partnership project(3GPP)technical report 25.996.The most obvious benefit of the proposed algorithm is to significantly reduce the cost on generating channel coefficients in GSCM simulation.
文摘As gravity field, magnetic field, electric field and seismic wave field are all physical fields, their object function, reverse function and compound function are certainly infinite continuously differentiable functions which can be expanded into Taylor (Fourier) series within domain of definition and be further reduced into solving stochastic distribution function of series and statistic inference of optimal approximation. This is the basis of combined gravity-magnetic-electric-seismic inversion of stochastic modeling. It is an uncertainty modeling technology of combining gravity-magnetic-electric-seismic inversion built on the basis of separation of field and source gravity-magnetic difference-value (D-value) trend surface, taking distribution-independent fault system as its unit, depths of seismic and electric interfaces of interests as its corresponding bivariate compound reverse function of gravity-magnetic anomalies and using high order polynomial (high order trigonometric function) approximating to its series distribution. The difference from current dominant inversion techniques is that, first, it does not respectively create gravity-seismic, magnetic-seismic deterministic inversion model from theoretical model, but combines gravity-magnetic-electric-seismic stochastic inversion model from stochastic model; second, after the concept of equivalent geological body being introduced, using feature of independent variable of gravity-magnetic field functions, taking density and susceptibility related to gravity-magnetic function as default parameters of model, the deterministic model is established owing to better solution to the contradiction of difficulty in identifying strata and less test analytical data for density and susceptibility in newly explored area; third, under assumption of independent parent distribution, a real modeling by strata, the problem of difficult plane closure arising in profile modeling is avoided. This technology has richer and more detailed fault and strata information than sparse pattern seismic data in newly explored area, successfully inverses and plots structural map of Indosinian discontinuity in Hefei basin with combined gravity-magnetic-electric-seismic inversion. With development of high precision gravity-magnetic and overall geophysical technology, it is certain for introducing new methods of stochastic modeling and computational intelligence and promoting the development of combined gravity-magnetic-electric-seismic inversion to open a new substantial path.
文摘After we modified raw data for anomalies, we conducted spectral analysis using the data. In the frequency, the spectrum is best described by a decaying exponential function. For this reason, stochastic models characterized by a spectrum attenuated according to a power law cannot be used to model precipitation anomaly. We introduced a new model, the e-model, which properly reproduces the spectrum of the precipitation anomaly. After using the data to infer the parameter values of the e-model, we used the e-model to generate synthetic daily precipitation time series. Comparison with recorded data shows a good agreement. This e-model resembles fractional Brown motion (fBm)/fractional Lévy motion (fLm), especially the spectral method. That is, we transform white noise Xt to the precipitation daily time series. Our analyses show that the frequency of extreme precipitation events is best described by a Lévy law and cannot be accounted with a Gaussian distribution.