Dynamical behaviors of a class of second order Hopfield neural networks with time delays is investigated.The existence of a unique equilibrium point is proved by using Brouwer's fixed point theorem and the counter...Dynamical behaviors of a class of second order Hopfield neural networks with time delays is investigated.The existence of a unique equilibrium point is proved by using Brouwer's fixed point theorem and the counter proof method,and some sufficient conditions for the global asymptotic stability of the equilibrium point are obtained through the combination of a suitable Lyapunov function and an algebraic inequality technique.展开更多
A type of stochastic interval delayed Hopfield neural networks as du(t) = [-AIu(t) + WIf(t,u(t)) + WIτf7τ(uτ(t)] dt +σ(t, u(t), uτ(t)) dw(t) on t≥0 with initiated value u(s) = ζ(s) on - τ≤s≤0 has been studie...A type of stochastic interval delayed Hopfield neural networks as du(t) = [-AIu(t) + WIf(t,u(t)) + WIτf7τ(uτ(t)] dt +σ(t, u(t), uτ(t)) dw(t) on t≥0 with initiated value u(s) = ζ(s) on - τ≤s≤0 has been studied. By using the Razumikhin theorem and Lyapunov functions, some sufficient conditions of their globally asymptotic robust stability and global exponential stability on such systems have been given. All the results obtained are generalizations of some recent ones reported in the literature for uncertain neural networks with constant delays or their certain cases.展开更多
This paper deals with the problem of delay-dependent robust stability for a class of switched Hopfield neural networks with time-varying structured uncertainties and time-varying delay. Some Lyapunov-KrasoVskii functi...This paper deals with the problem of delay-dependent robust stability for a class of switched Hopfield neural networks with time-varying structured uncertainties and time-varying delay. Some Lyapunov-KrasoVskii functionals are constructed and the linear matrix inequality (LMI) approach and free weighting matrix method are employed to devise some delay-dependent stability criteria which guarantee the existence, uniqueness and global exponential stability of the equilibrium point for all admissible parametric uncertainties. By using Leibniz-Newton formula, free weighting matrices are employed to express this relationship, which implies that the new criteria are less conservative than existing ones. Some examples suggest that the proposed criteria are effective and are an improvement over previous ones.展开更多
Without assuming the boundedness and differentiability of the nonlinear activation functions, the new sufficient conditions of the existence and the global exponential stability of periodic solutions for Hopfield neur...Without assuming the boundedness and differentiability of the nonlinear activation functions, the new sufficient conditions of the existence and the global exponential stability of periodic solutions for Hopfield neural network with periodic inputs are given by using Mawhin's coincidence degree theory and Liapunov's function method.展开更多
The global asymptotical stability for a class of stochastic delayed neural networks (SDNNs) with Maxkovian jumping parameters is considered. By applying Lyapunov functional method and Ito's differential rule, new d...The global asymptotical stability for a class of stochastic delayed neural networks (SDNNs) with Maxkovian jumping parameters is considered. By applying Lyapunov functional method and Ito's differential rule, new delay-dependent stability conditions are derived. All results are expressed in terms of linear matrix inequality (LMI), and a numerical example is presented to illustrate the correctness and less conservativeness of the proposed method.展开更多
By constructing Liapunov functions and building a new inequality, we obtain two kinds of sufficient conditions for the existence and global exponential stability of almost periodic solution for a Hopfield-type neural ...By constructing Liapunov functions and building a new inequality, we obtain two kinds of sufficient conditions for the existence and global exponential stability of almost periodic solution for a Hopfield-type neural networks subject to almost periodic external stimuli. Irt this paper, we assume that the network parameters vary almost periodically with time and we incorporate variable delays in the processing part of the network architectures.展开更多
Discrete Hopfield neural network with delay is an extension of discrete Hopfield neural network. As it is well known, the stability of neural networks is not only the most basic and important problem but also foundati...Discrete Hopfield neural network with delay is an extension of discrete Hopfield neural network. As it is well known, the stability of neural networks is not only the most basic and important problem but also foundation of the network's applications. The stability of discrete HJopfield neural networks with delay is mainly investigated by using Lyapunov function. The sufficient conditions for the networks with delay converging towards a limit cycle of length 4 are obtained. Also, some sufficient criteria are given to ensure the networks having neither a stable state nor a limit cycle with length 2. The obtained results here generalize the previous results on stability of discrete Hopfield neural network with delay and without delay.展开更多
The existence, uniqueness and global asymptotic stability for the equilibrium of Hopfield-type neural networks with diffusion effects are studied. When the activation functions are monotonously nondecreasing, differen...The existence, uniqueness and global asymptotic stability for the equilibrium of Hopfield-type neural networks with diffusion effects are studied. When the activation functions are monotonously nondecreasing, differentiable, and the interconnected matrix is related to the Lyapunov diagonal stable matrix, the sufficient conditions guaranteeing the existence of the equilibrium of the system are obtained by applying the topological degree theory. By means of constructing the suitable average Lyapunov functions, the global asymptotic stability of the equilibrium of the system is also investigated. It is shown that the equilibrium (if it exists) is globally asymptotically stable and this implies that the equilibrium of the system is unique.展开更多
In this paper, the problem of delay-distribution-dependent stability is investigated for continuous-time recurrent neural networks (CRNNs) with stochastic delay. Different from the common assumptions on time delays,...In this paper, the problem of delay-distribution-dependent stability is investigated for continuous-time recurrent neural networks (CRNNs) with stochastic delay. Different from the common assumptions on time delays, it is assumed that the probability distribution of the delay taking values in some intervals is known a priori. By making full use of the information concerning the probability distribution of the delay and by using a tighter bounding technique (the reciprocally convex combination method), less conservative asymptotic mean-square stable sufficient conditions are derived in terms of linear matrix inequalities (LMIs). Two numerical examples show that our results are better than the existing ones.展开更多
This paper deals with the global asymptotic stability problem for Hopfield neural networks with time-varying delays. By resorting to the integral inequality and constructing a Lyapunov-Krasovskii functional, a novel d...This paper deals with the global asymptotic stability problem for Hopfield neural networks with time-varying delays. By resorting to the integral inequality and constructing a Lyapunov-Krasovskii functional, a novel delay-dependent condition is established to guarantee the existence and global asymptotic stability of the unique equilibrium point for a given delayed Hopfield neural network. This criterion is expressed in terms of linear matrix inequalities (LMIs), which can be easily checked by utilizing the recently developed algorithms for solving LMIs. Examples are provided to demonstrate the effectiveness and reduced conservatism of the proposed condition.展开更多
Inner stability and stabilization of Cohen-Grossberg generalized delay stochastic neural network with distributed parameter are discussed. The main method adopted is, combining inequality techniques, to apply Ito diff...Inner stability and stabilization of Cohen-Grossberg generalized delay stochastic neural network with distributed parameter are discussed. The main method adopted is, combining inequality techniques, to apply Ito differential formula to the constructed average function with respect to spatial variables along the system considered under the integral operator. Some sufficient conditions are given.展开更多
This paper studies the problem of linear matrix inequality (LMI) approach to robust stability analysis for stochastic neural networks with a time-varying delay. By developing a delay decomposition approach, the info...This paper studies the problem of linear matrix inequality (LMI) approach to robust stability analysis for stochastic neural networks with a time-varying delay. By developing a delay decomposition approach, the information of the delayed plant states can be taken into full consideration. Based on the new Lyapunov-Krasovskii functional, some inequality techniques and stochastic stability theory, new delay-dependent stability criteria are obtained in terms of LMIs. The proposed results prove the less conservatism, which are realized by choosing new Lyapunov matrices in the decomposed integral intervals. Finally, numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed LMI method.展开更多
In this note, we would like to point out that (i) of Corollary 1 given by Zhang et al. (cf Commun. Theor. Phys. 39 (2003) 381) is incorrect in general.
In this paper, almost sure exponential stability of neutral delayed cellular neural networks which are in the noised environment is studied by decomposing the state space to sub-regions in view of the saturation linea...In this paper, almost sure exponential stability of neutral delayed cellular neural networks which are in the noised environment is studied by decomposing the state space to sub-regions in view of the saturation linearity of output functions of neurons of the cellular neural networks. Some algebraic criteria are obtained and easily verified. Some examples are given to illustrate the correctness of the results obtained.展开更多
The global exponentially stability and the existence of periodic solutions of a class of Hopfield neural networks with time delays are investigated. By constructing a novel Lyapunov function, new criteria are provided...The global exponentially stability and the existence of periodic solutions of a class of Hopfield neural networks with time delays are investigated. By constructing a novel Lyapunov function, new criteria are provided to guarantee the global exponentially stability of such systems. For the delayed Hopfield neural networks with time-varying external inputs, new criteria are also acquired for the existence and exponentially stability of periodic solutions. The results are generalizations and improvements of some recent achievements reported in the literature on networks with time delays.展开更多
In this paper, Hopfield neural networks with impulse and leakage time-varying delay are considered. New sufficient conditions for global asymptotical stability of the equilibrium point are derived by using Lyapunov-Kr...In this paper, Hopfield neural networks with impulse and leakage time-varying delay are considered. New sufficient conditions for global asymptotical stability of the equilibrium point are derived by using Lyapunov-Kravsovskii functional, model transformation and some analysis techniques. The criterion of stability depends on the impulse and the bounds of the leakage time-varying delay and its derivative, and is presented in terms of a linear matrix inequality (LMI).展开更多
In this paper, the global asymptotic stability analysis problem is considered for a class of stochastic high-order neural networks with tin.delays. Based on a Lyapunov-Krasovskii functional and the stochastic stabilit...In this paper, the global asymptotic stability analysis problem is considered for a class of stochastic high-order neural networks with tin.delays. Based on a Lyapunov-Krasovskii functional and the stochastic stability analysis theory, several sufficient conditions are derived in order to guarantee the global asymptotic convergence of the equilibtium paint in the mean square. Investigation shows that the addressed stochastic highorder delayed neural networks are globally asymptotically stable in the mean square if there are solutions to some linear matrix inequalities (LMIs). Hence, the global asymptotic stability of the studied stochastic high-order delayed neural networks can be easily checked by the Matlab LMI toolbox. A numerical example is given to demonstrate the usefulness of the proposed global stability criteria.展开更多
基金Research supported by the National Natural Science Foundation of China(12271220)postgraduate research and practice innovation program of Jiangsu Province(KYCX24-3010)。
文摘Dynamical behaviors of a class of second order Hopfield neural networks with time delays is investigated.The existence of a unique equilibrium point is proved by using Brouwer's fixed point theorem and the counter proof method,and some sufficient conditions for the global asymptotic stability of the equilibrium point are obtained through the combination of a suitable Lyapunov function and an algebraic inequality technique.
基金This project was supported by the National Natural Science Foundation of China (60074008, 60274007, 60274026) National Doctor foundaction of China (20010487005).
文摘A type of stochastic interval delayed Hopfield neural networks as du(t) = [-AIu(t) + WIf(t,u(t)) + WIτf7τ(uτ(t)] dt +σ(t, u(t), uτ(t)) dw(t) on t≥0 with initiated value u(s) = ζ(s) on - τ≤s≤0 has been studied. By using the Razumikhin theorem and Lyapunov functions, some sufficient conditions of their globally asymptotic robust stability and global exponential stability on such systems have been given. All the results obtained are generalizations of some recent ones reported in the literature for uncertain neural networks with constant delays or their certain cases.
基金This work is supported by the National Natural Science Foundation of China (No.60674026)the Key Research Foundation of Science and Technology of the Ministry of Education of China (No.107058).
文摘This paper deals with the problem of delay-dependent robust stability for a class of switched Hopfield neural networks with time-varying structured uncertainties and time-varying delay. Some Lyapunov-KrasoVskii functionals are constructed and the linear matrix inequality (LMI) approach and free weighting matrix method are employed to devise some delay-dependent stability criteria which guarantee the existence, uniqueness and global exponential stability of the equilibrium point for all admissible parametric uncertainties. By using Leibniz-Newton formula, free weighting matrices are employed to express this relationship, which implies that the new criteria are less conservative than existing ones. Some examples suggest that the proposed criteria are effective and are an improvement over previous ones.
文摘Without assuming the boundedness and differentiability of the nonlinear activation functions, the new sufficient conditions of the existence and the global exponential stability of periodic solutions for Hopfield neural network with periodic inputs are given by using Mawhin's coincidence degree theory and Liapunov's function method.
基金supported by the National Natural Science Foundation of China(60874114).
文摘The global asymptotical stability for a class of stochastic delayed neural networks (SDNNs) with Maxkovian jumping parameters is considered. By applying Lyapunov functional method and Ito's differential rule, new delay-dependent stability conditions are derived. All results are expressed in terms of linear matrix inequality (LMI), and a numerical example is presented to illustrate the correctness and less conservativeness of the proposed method.
基金The Soft Project (B30145) of Science and Technology of Hunan Province.
文摘By constructing Liapunov functions and building a new inequality, we obtain two kinds of sufficient conditions for the existence and global exponential stability of almost periodic solution for a Hopfield-type neural networks subject to almost periodic external stimuli. Irt this paper, we assume that the network parameters vary almost periodically with time and we incorporate variable delays in the processing part of the network architectures.
文摘Discrete Hopfield neural network with delay is an extension of discrete Hopfield neural network. As it is well known, the stability of neural networks is not only the most basic and important problem but also foundation of the network's applications. The stability of discrete HJopfield neural networks with delay is mainly investigated by using Lyapunov function. The sufficient conditions for the networks with delay converging towards a limit cycle of length 4 are obtained. Also, some sufficient criteria are given to ensure the networks having neither a stable state nor a limit cycle with length 2. The obtained results here generalize the previous results on stability of discrete Hopfield neural network with delay and without delay.
基金Project supported by the National Natural Science Foundation of China (No.10571078)the Natural Science Foundation of Gansu Province of China (No.3ZX062-B25-012)
文摘The existence, uniqueness and global asymptotic stability for the equilibrium of Hopfield-type neural networks with diffusion effects are studied. When the activation functions are monotonously nondecreasing, differentiable, and the interconnected matrix is related to the Lyapunov diagonal stable matrix, the sufficient conditions guaranteeing the existence of the equilibrium of the system are obtained by applying the topological degree theory. By means of constructing the suitable average Lyapunov functions, the global asymptotic stability of the equilibrium of the system is also investigated. It is shown that the equilibrium (if it exists) is globally asymptotically stable and this implies that the equilibrium of the system is unique.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61273164,61034005,and 60974071)the National High Technology Research and Development Program of China(Grant No.2012AA040104)the Fundamental Research Funds for the Central Universities(Grant Nos.N100104102 and N110604007)
文摘In this paper, the problem of delay-distribution-dependent stability is investigated for continuous-time recurrent neural networks (CRNNs) with stochastic delay. Different from the common assumptions on time delays, it is assumed that the probability distribution of the delay taking values in some intervals is known a priori. By making full use of the information concerning the probability distribution of the delay and by using a tighter bounding technique (the reciprocally convex combination method), less conservative asymptotic mean-square stable sufficient conditions are derived in terms of linear matrix inequalities (LMIs). Two numerical examples show that our results are better than the existing ones.
基金supported by National Natural Science Foundation of China (No. 60674027, 60875039, 60904022 and 60974127)Specialized Research Fund for the Doctoral Program of Higher Education (No. 20050446001)+2 种基金China Postdoctoral Science Foundation(No. 20070410336)Postdoctoral Foundation of Jiangsu Province(No. 0602042B)Scientific Research Foundation of Qufu Normal University
文摘This paper deals with the global asymptotic stability problem for Hopfield neural networks with time-varying delays. By resorting to the integral inequality and constructing a Lyapunov-Krasovskii functional, a novel delay-dependent condition is established to guarantee the existence and global asymptotic stability of the unique equilibrium point for a given delayed Hopfield neural network. This criterion is expressed in terms of linear matrix inequalities (LMIs), which can be easily checked by utilizing the recently developed algorithms for solving LMIs. Examples are provided to demonstrate the effectiveness and reduced conservatism of the proposed condition.
文摘Inner stability and stabilization of Cohen-Grossberg generalized delay stochastic neural network with distributed parameter are discussed. The main method adopted is, combining inequality techniques, to apply Ito differential formula to the constructed average function with respect to spatial variables along the system considered under the integral operator. Some sufficient conditions are given.
基金supported by the Science Foundation of the Department of Science and Technology,New Delhi,India (Grant No.SR/S4/MS:485/07)
文摘This paper studies the problem of linear matrix inequality (LMI) approach to robust stability analysis for stochastic neural networks with a time-varying delay. By developing a delay decomposition approach, the information of the delayed plant states can be taken into full consideration. Based on the new Lyapunov-Krasovskii functional, some inequality techniques and stochastic stability theory, new delay-dependent stability criteria are obtained in terms of LMIs. The proposed results prove the less conservatism, which are realized by choosing new Lyapunov matrices in the decomposed integral intervals. Finally, numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed LMI method.
文摘In this note, we would like to point out that (i) of Corollary 1 given by Zhang et al. (cf Commun. Theor. Phys. 39 (2003) 381) is incorrect in general.
基金the National Natural Science Foundation of China (No. 10571036)Tianjin Municipal Education Commission of China(No. 20070405)
文摘In this paper, almost sure exponential stability of neutral delayed cellular neural networks which are in the noised environment is studied by decomposing the state space to sub-regions in view of the saturation linearity of output functions of neurons of the cellular neural networks. Some algebraic criteria are obtained and easily verified. Some examples are given to illustrate the correctness of the results obtained.
基金the Science Foundation of Guangdong Province in China
文摘The global exponentially stability and the existence of periodic solutions of a class of Hopfield neural networks with time delays are investigated. By constructing a novel Lyapunov function, new criteria are provided to guarantee the global exponentially stability of such systems. For the delayed Hopfield neural networks with time-varying external inputs, new criteria are also acquired for the existence and exponentially stability of periodic solutions. The results are generalizations and improvements of some recent achievements reported in the literature on networks with time delays.
文摘In this paper, Hopfield neural networks with impulse and leakage time-varying delay are considered. New sufficient conditions for global asymptotical stability of the equilibrium point are derived by using Lyapunov-Kravsovskii functional, model transformation and some analysis techniques. The criterion of stability depends on the impulse and the bounds of the leakage time-varying delay and its derivative, and is presented in terms of a linear matrix inequality (LMI).
文摘In this paper, the global asymptotic stability analysis problem is considered for a class of stochastic high-order neural networks with tin.delays. Based on a Lyapunov-Krasovskii functional and the stochastic stability analysis theory, several sufficient conditions are derived in order to guarantee the global asymptotic convergence of the equilibtium paint in the mean square. Investigation shows that the addressed stochastic highorder delayed neural networks are globally asymptotically stable in the mean square if there are solutions to some linear matrix inequalities (LMIs). Hence, the global asymptotic stability of the studied stochastic high-order delayed neural networks can be easily checked by the Matlab LMI toolbox. A numerical example is given to demonstrate the usefulness of the proposed global stability criteria.