期刊文献+
共找到231篇文章
< 1 2 12 >
每页显示 20 50 100
Stochastic Modelling of Vulnerability Life Cycle and Security Risk Evaluation 被引量:4
1
作者 Sasith M. Rajasooriya Chris P. Tsokos Pubudu Kalpani Kaluarachchi 《Journal of Information Security》 2016年第4期269-279,共11页
The objective of the present study is to propose a risk evaluation statistical model for a given vulnerability by examining the Vulnerability Life Cycle and the CVSS score. Having a better understanding of the behavio... The objective of the present study is to propose a risk evaluation statistical model for a given vulnerability by examining the Vulnerability Life Cycle and the CVSS score. Having a better understanding of the behavior of vulnerability with respect to time will give us a great advantage. Such understanding will help us to avoid exploitations and introduce patches for a particular vulnerability before the attacker takes the advantage. Utilizing the proposed model one can identify the risk factor of a specific vulnerability being exploited as a function of time. Measuring of the risk factor of a given vulnerability will also help to improve the security level of software and to make appropriate decisions to patch the vulnerability before an exploitation takes place. 展开更多
关键词 stochastic modelling SECURITY Risk Evaluation Vulnerability Life Cycle Risk Factor
下载PDF
Stochastic Simulation of Saline Intrusion in the Coastal Aquifer of Saloum, Senegal
2
作者 Seyni Ndoye Amadou Sarr +3 位作者 Mathieu Le Coz Cheikh Becaye Gaye Moumtaz Razack Philippe Le Coustumer 《Journal of Environmental Protection》 2024年第8期863-873,共11页
In the Saloum region of central-western Senegal, water needs are essentially met by tapping an underground aquifer associated with the sandy-clay formations of the Continental Terminal, in contact with both the ocean ... In the Saloum region of central-western Senegal, water needs are essentially met by tapping an underground aquifer associated with the sandy-clay formations of the Continental Terminal, in contact with both the ocean to the west and the highly saline waters of the Saloum River to the north. In this estuarine and deltaic zone with its very low relief, the hydraulic loads in the water tables are generally close to zero or even negative, creating a reversal of the natural flow and encouraging saline intrusion into this system, which makes it very vulnerable. This study concerns the implementation of a numerical model of saline intrusion to provide a better understanding of the vulnerability of the water table by analyzing the variability of the freshwater/saltwater interface. The Modflow-2005 code is used to simulate saline intrusion using the SWI2 module, coupled with the GRASS (Geographic Resources Analysis Support System) software under the Linux operating system with the steep interface approach. The probable expansion of the wedge is studied in three scenarios, taking into account its position relative to the bedrock at 1 m, 5 m and 10 m. Simulations carried out under imposed potential and river conditions, based on variations in groundwater reserves using two effective porosity values, 10−1 and 10−2, show that the water table is highly vulnerable in the northwest sector. The probable expansion of the wedge increases as the storage coefficient decreases and is more marked with river conditions in the areas surrounding the Saloum River, reaching 6 km with a probability of 1. The probability of the wedge reaching a certain degree of expansion decreases from 1 to 0.5, and then cancels out as it moves inland. The probable position of the wedge is limited to 500 m or even 1 km depending on the corner around the coast to the southwest and in the southern zone. This modelling, carried out under natural conditions, will be developed further, taking into account climatic parameters and pumping from wells and boreholes. 展开更多
关键词 Saline Intrusion stochastic modelling MODFLOW SWI2 Grass GIS AQUIFER Saloum Senegal
下载PDF
A modified stochastic model for LS+AR hybrid method and its application in polar motion short-term prediction 被引量:1
3
作者 Fei Ye Yunbin Yuan 《Geodesy and Geodynamics》 EI CSCD 2024年第1期100-105,共6页
Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currentl... Short-term(up to 30 days)predictions of Earth Rotation Parameters(ERPs)such as Polar Motion(PM:PMX and PMY)play an essential role in real-time applications related to high-precision reference frame conversion.Currently,least squares(LS)+auto-regressive(AR)hybrid method is one of the main techniques of PM prediction.Besides,the weighted LS+AR hybrid method performs well for PM short-term prediction.However,the corresponding covariance information of LS fitting residuals deserves further exploration in the AR model.In this study,we have derived a modified stochastic model for the LS+AR hybrid method,namely the weighted LS+weighted AR hybrid method.By using the PM data products of IERS EOP 14 C04,the numerical results indicate that for PM short-term forecasting,the proposed weighted LS+weighted AR hybrid method shows an advantage over both the LS+AR hybrid method and the weighted LS+AR hybrid method.Compared to the mean absolute errors(MAEs)of PMX/PMY sho rt-term prediction of the LS+AR hybrid method and the weighted LS+AR hybrid method,the weighted LS+weighted AR hybrid method shows average improvements of 6.61%/12.08%and 0.24%/11.65%,respectively.Besides,for the slopes of the linear regression lines fitted to the errors of each method,the growth of the prediction error of the proposed method is slower than that of the other two methods. 展开更多
关键词 stochastic model LS+AR Short-term prediction The earth rotation parameter(ERP) Observation model
下载PDF
A Stochastic Model to Assess the Epidemiological Impact of Vaccine Booster Doses on COVID-19 and Viral Hepatitis B Co-Dynamics with Real Data
4
作者 Andrew Omame Mujahid Abbas Dumitru Baleanu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2973-3012,共40页
A patient co-infected with COVID-19 and viral hepatitis B can be atmore risk of severe complications than the one infected with a single infection.This study develops a comprehensive stochastic model to assess the epi... A patient co-infected with COVID-19 and viral hepatitis B can be atmore risk of severe complications than the one infected with a single infection.This study develops a comprehensive stochastic model to assess the epidemiological impact of vaccine booster doses on the co-dynamics of viral hepatitis B and COVID-19.The model is fitted to real COVID-19 data from Pakistan.The proposed model incorporates logistic growth and saturated incidence functions.Rigorous analyses using the tools of stochastic calculus,are performed to study appropriate conditions for the existence of unique global solutions,stationary distribution in the sense of ergodicity and disease extinction.The stochastic threshold estimated from the data fitting is given by:R_(0)^(S)=3.0651.Numerical assessments are implemented to illustrate the impact of double-dose vaccination and saturated incidence functions on the dynamics of both diseases.The effects of stochastic white noise intensities are also highlighted. 展开更多
关键词 Viral hepatitis B COVID-19 stochastic model EXTINCTION ERGODICITY real data
下载PDF
Analytical and NumericalMethods to Study the MFPT and SR of a Stochastic Tumor-Immune Model
5
作者 Ying Zhang Wei Li +1 位作者 Guidong Yang Snezana Kirin 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2177-2199,共23页
The Mean First-Passage Time (MFPT) and Stochastic Resonance (SR) of a stochastic tumor-immune model withnoise perturbation are discussed in this paper. Firstly, considering environmental perturbation, Gaussian whiteno... The Mean First-Passage Time (MFPT) and Stochastic Resonance (SR) of a stochastic tumor-immune model withnoise perturbation are discussed in this paper. Firstly, considering environmental perturbation, Gaussian whitenoise and Gaussian colored noise are introduced into a tumor growth model under immune surveillance. Asfollows, the long-time evolution of the tumor characterized by the Stationary Probability Density (SPD) and MFPTis obtained in theory on the basis of the Approximated Fokker-Planck Equation (AFPE). Herein the recurrenceof the tumor from the extinction state to the tumor-present state is more concerned in this paper. A moreefficient algorithmof Back-Propagation Neural Network (BPNN) is utilized in order to testify the correction of thetheoretical SPDandMFPT.With the existence of aweak signal, the functional relationship between Signal-to-NoiseRatio (SNR), noise intensities and correlation time is also studied. Numerical results show that both multiplicativeGaussian colored noise and additive Gaussian white noise can promote the extinction of the tumors, and themultiplicative Gaussian colored noise can lead to the resonance-like peak on MFPT curves, while the increasingintensity of the additiveGaussian white noise results in theminimum of MFPT. In addition, the correlation timesare negatively correlated with MFPT. As for the SNR, we find the intensities of both the Gaussian white noise andthe Gaussian colored noise, as well as their correlation intensity can induce SR. Especially, SNR is monotonouslyincreased in the case ofGaussian white noisewith the change of the correlation time.At last, the optimal parametersin BPNN structure are analyzed for MFPT from three aspects: the penalty factors, the number of neural networklayers and the number of nodes in each layer. 展开更多
关键词 stochastic tumor-immune model mean first-passage time stochastic resonance signal-to-noise ratio back-propagation neural network
下载PDF
Numerical Analysis of Bacterial Meningitis Stochastic Delayed Epidemic Model through Computational Methods
6
作者 Umar Shafique Mohamed Mahyoub Al-Shamiri +3 位作者 Ali Raza Emad Fadhal Muhammad Rafiq Nauman Ahmed 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期311-329,共19页
Based on theWorld Health Organization(WHO),Meningitis is a severe infection of the meninges,the membranes covering the brain and spinal cord.It is a devastating disease and remains a significant public health challeng... Based on theWorld Health Organization(WHO),Meningitis is a severe infection of the meninges,the membranes covering the brain and spinal cord.It is a devastating disease and remains a significant public health challenge.This study investigates a bacterial meningitis model through deterministic and stochastic versions.Four-compartment population dynamics explain the concept,particularly the susceptible population,carrier,infected,and recovered.The model predicts the nonnegative equilibrium points and reproduction number,i.e.,the Meningitis-Free Equilibrium(MFE),and Meningitis-Existing Equilibrium(MEE).For the stochastic version of the existing deterministicmodel,the twomethodologies studied are transition probabilities and non-parametric perturbations.Also,positivity,boundedness,extinction,and disease persistence are studiedrigorouslywiththe helpofwell-known theorems.Standard and nonstandard techniques such as EulerMaruyama,stochastic Euler,stochastic Runge Kutta,and stochastic nonstandard finite difference in the sense of delay have been presented for computational analysis of the stochastic model.Unfortunately,standard methods fail to restore the biological properties of the model,so the stochastic nonstandard finite difference approximation is offered as an efficient,low-cost,and independent of time step size.In addition,the convergence,local,and global stability around the equilibria of the nonstandard computational method is studied by assuming the perturbation effect is zero.The simulations and comparison of the methods are presented to support the theoretical results and for the best visualization of results. 展开更多
关键词 Bacterial Meningitis disease stochastic delayed model stability analysis extinction and persistence computational methods
下载PDF
Stochastic modelling of infectious diseases for heterogeneous populations 被引量:2
7
作者 Rui-Xing Ming Jiming Liu +1 位作者 William K.W.Cheung Xiang Wan 《Infectious Diseases of Poverty》 SCIE 2016年第1期982-992,共11页
Background:Infectious diseases such as SARS and H1N1 can significantly impact people’s lives and cause severe social and economic damages.Recent outbreaks have stressed the urgency of effective research on the dynami... Background:Infectious diseases such as SARS and H1N1 can significantly impact people’s lives and cause severe social and economic damages.Recent outbreaks have stressed the urgency of effective research on the dynamics of infectious disease spread.However,it is difficult to predict when and where outbreaks may emerge and how infectious diseases spread because many factors affect their transmission,and some of them may be unknown.Methods:One feasible means to promptly detect an outbreak and track the progress of disease spread is to implement surveillance systems in regional or national health and medical centres.The accumulated surveillance data,including temporal,spatial,clinical,and demographic information can provide valuable information that can be exploited to better understand and model the dynamics of infectious disease spread.The aim of this work is to develop and empirically evaluate a stochastic model that allows the investigation of transmission patterns of infectious diseases in heterogeneous populations.Results:We test the proposed model on simulation data and apply it to the surveillance data from the 2009 H1N1 pandemic in Hong Kong.In the simulation experiment,our model achieves high accuracy in parameter estimation(less than 10.0%mean absolute percentage error).In terms of the forward prediction of case incidence,the mean absolute percentage errors are 17.3%for the simulation experiment and 20.0%for the experiment on the real surveillance data.Conclusion:We propose a stochastic model to study the dynamics of infectious disease spread in heterogeneous populations from temporal-spatial surveillance data.The proposed model is evaluated using both simulated data and the real data from the 2009 H1N1 epidemic in Hong Kong and achieves acceptable prediction accuracy.We believe that our model can provide valuable insights for public health authorities to predict the effect of disease spread and analyse its underlying factors and to guide new control efforts. 展开更多
关键词 EPIDEMIOLOGY stochastic model Surveillance system Spread pattern
原文传递
Stochastic dynamic simulation of railway vehicles collision using data-driven modelling approach
8
作者 ShaodiDong Zhao Tang +1 位作者 Michelle Wu Jianjun Zhang 《Railway Engineering Science》 2022年第4期512-531,共20页
Using stochastic dynamic simulation for railway vehicle collision still faces many challenges,such as high modelling complexity and time-consuming.To address the challenges,we introduce a novel data-driven stochastic ... Using stochastic dynamic simulation for railway vehicle collision still faces many challenges,such as high modelling complexity and time-consuming.To address the challenges,we introduce a novel data-driven stochastic process modelling(DSPM)approach into dynamic simulation of the railway vehicle collision.This DSPM approach consists of two steps:(i)process description,four kinds of kernels are used to describe the uncertainty inherent in collision processes;(ii)solving,stochastic variational inferences and mini-batch algorithms can then be used to accelerate computations of stochastic processes.By applying DSPM,Gaussian process regression(GPR)and finite element(FE)methods to two collision scenarios(i.e.lead car colliding with a rigid wall,and the lead car colliding with another lead car),we are able to achieve a comprehensive analysis.The comparison between the DSPM approach and the FE method revealed that the DSPM approach is capable of calculating the corresponding confidence interval,simultaneously improving the overall computational efficiency.Comparing the DSPM approach with the GPR method indicates that the DSPM approach has the ability to accurately describe the dynamic response under unknown conditions.Overall,this research demonstrates the feasibility and usability of the proposed DSPM approach for stochastic dynamics simulation of the railway vehicle collision. 展开更多
关键词 Dynamic simulation Railway vehicle collision stochastic process Data-driven stochastic process modelling
下载PDF
Optimal Quota-Share and Excess-of-Loss Reinsurance and Investment with Heston’s Stochastic Volatility Model 被引量:1
9
作者 伊浩然 舒慧生 单元闯 《Journal of Donghua University(English Edition)》 CAS 2023年第1期59-67,共9页
An optimal quota-share and excess-of-loss reinsurance and investment problem is studied for an insurer who is allowed to invest in a risk-free asset and a risky asset.Especially the price process of the risky asset is... An optimal quota-share and excess-of-loss reinsurance and investment problem is studied for an insurer who is allowed to invest in a risk-free asset and a risky asset.Especially the price process of the risky asset is governed by Heston's stochastic volatility(SV)model.With the objective of maximizing the expected index utility of the terminal wealth of the insurance company,by using the classical tools of stochastic optimal control,the explicit expressions for optimal strategies and optimal value functions are derived.An interesting conclusion is found that it is better to buy one reinsurance than two under the assumption of this paper.Moreover,some numerical simulations and sensitivity analysis are provided. 展开更多
关键词 optimal reinsurance optimal investment quota-share and excess-of-loss reinsurance stochastic volatility(SV)model exponential utility function
下载PDF
Stochastic Models to Mitigate Sparse Sensor Attacks in Continuous-Time Non-Linear Cyber-Physical Systems
10
作者 Borja Bordel Sánchez Ramón Alcarria Tomás Robles 《Computers, Materials & Continua》 SCIE EI 2023年第9期3189-3218,共30页
Cyber-Physical Systems are very vulnerable to sparse sensor attacks.But current protection mechanisms employ linear and deterministic models which cannot detect attacks precisely.Therefore,in this paper,we propose a n... Cyber-Physical Systems are very vulnerable to sparse sensor attacks.But current protection mechanisms employ linear and deterministic models which cannot detect attacks precisely.Therefore,in this paper,we propose a new non-linear generalized model to describe Cyber-Physical Systems.This model includes unknown multivariable discrete and continuous-time functions and different multiplicative noises to represent the evolution of physical processes and randomeffects in the physical and computationalworlds.Besides,the digitalization stage in hardware devices is represented too.Attackers and most critical sparse sensor attacks are described through a stochastic process.The reconstruction and protectionmechanisms are based on aweighted stochasticmodel.Error probability in data samples is estimated through different indicators commonly employed in non-linear dynamics(such as the Fourier transform,first-return maps,or the probability density function).A decision algorithm calculates the final reconstructed value considering the previous error probability.An experimental validation based on simulation tools and real deployments is also carried out.Both,the new technology performance and scalability are studied.Results prove that the proposed solution protects Cyber-Physical Systems against up to 92%of attacks and perturbations,with a computational delay below 2.5 s.The proposed model shows a linear complexity,as recursive or iterative structures are not employed,just algebraic and probabilistic functions.In conclusion,the new model and reconstructionmechanism can protect successfully Cyber-Physical Systems against sparse sensor attacks,even in dense or pervasive deployments and scenarios. 展开更多
关键词 Cyber-physical systems sparse sensor attack non-linear models stochastic models security
下载PDF
Exit problem of stochastic SIR model with limited medical resource
11
作者 Y.C.Mao X.B.Liu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2023年第1期8-13,共6页
Nonlinearity and randomness are both the essential attributes for the real world,and the case is the same for the models of infectious diseases,for which the deterministic models can not give a complete picture of the... Nonlinearity and randomness are both the essential attributes for the real world,and the case is the same for the models of infectious diseases,for which the deterministic models can not give a complete picture of the evolution.However,although there has been a lot of work on stochastic epidemic models,most of them focus mainly on qualitative properties,which makes us somewhat ignore the original meaning of the parameter value.In this paper we extend the classic susceptible-infectious-removed(SIR)epidemic model by adding a white noise excitation and then we utilize the large deviation theory to quantitatively study the long-term coexistence exit problem with epidemic.Finally,in order to extend the meaning of parameters in the corresponding deterministic system,we tentatively introduce two new thresholds which then prove rational. 展开更多
关键词 stochastic epidemic model stochastic dynamical system Large deviation theory Exit problem
下载PDF
The Stochastic Asymptotic Stability Analysis in Two Species Lotka-Volterra Model
12
作者 Yuqin Li Yuehua He 《Applied Mathematics》 2023年第7期450-459,共10页
The asymptotic stability of two species stochastic Lotka-Volterra model is explored in this paper. Firstly, the Lotka-Volterra model with random parameter is built and reduced into the equivalent deterministic system ... The asymptotic stability of two species stochastic Lotka-Volterra model is explored in this paper. Firstly, the Lotka-Volterra model with random parameter is built and reduced into the equivalent deterministic system by orthogonal polynomial approximation. Then, the linear stability theory and Routh-Hurwitz criterion for nonlinear deterministic systems are applied to the equivalent one. At last, at the aid of Lyapunov second method, we obtain that as the random intensity or statistical parameter of random variable is changed, the stability about stochastic Lotka-Volterra model is different from the deterministic system. 展开更多
关键词 Asymptotic Stability stochastic Lotka-Volterra Model Lyapunov Method
下载PDF
Stochastic Analysis of Interconnect Delay in the Presence of Process Variations 被引量:3
13
作者 李鑫 Janet M.Wang +1 位作者 唐卫清 吴慧中 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2008年第2期304-309,共6页
Process variations can reduce the accuracy in estimation of interconnect performance. This work presents a process variation based stochastic model and proposes an effective analytical method to estimate interconnect ... Process variations can reduce the accuracy in estimation of interconnect performance. This work presents a process variation based stochastic model and proposes an effective analytical method to estimate interconnect delay. The technique decouples the stochastic interconnect segments by an improved decoupling method. Combined with a polynomial chaos expression (PCE), this paper applies the stochastic Galerkin method (SGM) to analyze the system response. A finite representation of interconnect delay is then obtained with the complex approximation method and the bisection method. Results from the analysis match well with those from SPICE. Moreover, the method shows good computational efficiency, as the running time is much less than the SPICE simulation's. 展开更多
关键词 coupled interconnects process variations stochastic modeling delay estimation stochastic Galerkin method polynomial chaos expression
下载PDF
A Stochastic Numerical Analysis for Computer Virus Model with Vertical Transmission Over the Internet 被引量:6
14
作者 Muhammad Shoaib Arif Ali Raza +2 位作者 Wasfi Shatanawi Muhammad Rafiq Mairaj Bibi 《Computers, Materials & Continua》 SCIE EI 2019年第9期1025-1043,共19页
We are presenting the numerical analysis for stochastic SLBR model of computer virus over the internet in this manuscript.We are going to present the results of stochastic and deterministic computer virus model.Outcom... We are presenting the numerical analysis for stochastic SLBR model of computer virus over the internet in this manuscript.We are going to present the results of stochastic and deterministic computer virus model.Outcomes of the threshold number C∗hold in stochastic computer virus model.If C∗<1 then in such a condition virus controlled in the computer population while C∗>1 shows virus spread in the computer population.Unfortunately,stochastic numerical techniques fail to cope with large step sizes of time.The suggested structure of the stochastic non-standard finite difference scheme(SNSFD)maintains all diverse characteristics such as dynamical consistency,bounded-ness and positivity as well-defined by Mickens.On this basis,we can suggest a collection of plans for eradicating viruses spreading across the internet effectively. 展开更多
关键词 Computer virus model stochastic modelling stochastic techniques stability
下载PDF
Numerical Simulations for Stochastic Computer Virus Propagation Model 被引量:2
15
作者 Muhammad Shoaib Arif Ali Raza +4 位作者 Muhammad Rafiq Mairaj Bibi Javeria Nawaz Abbasi Amna Nazeer Umer Javed 《Computers, Materials & Continua》 SCIE EI 2020年第1期61-77,共17页
We are presenting the numerical simulations for the stochastic computer virus propagation model in this manuscript.We are comparing the solutions of stochastic and deterministic computer virus models.Outcomes of a thr... We are presenting the numerical simulations for the stochastic computer virus propagation model in this manuscript.We are comparing the solutions of stochastic and deterministic computer virus models.Outcomes of a threshold number R0 hold in stochastic computer virus model.If R_(0)<1 then in such a condition virus controlled in the computer population while R_(0)>1 shows virus rapidly spread in the computer population.Unfortunately,stochastic numerical techniques fail to cope with large step sizes of time.The suggested structure of the stochastic non-standard finite difference technique can never violate the dynamical properties.On this basis,we can suggest a collection of strategies for removing virus’s propagation in the computer population. 展开更多
关键词 Computer virus propagation model stochastic modelling stochastic processes stochastic techniques Convergence analysis
下载PDF
Numerical Control Measures of Stochastic Malaria Epidemic Model 被引量:1
16
作者 Muhammad Rafiq Ali Ahmadian +3 位作者 Ali Raza Dumitru Baleanu Muhammad Sarwar Ahsan Mohammad Hasan Abdul Sathar 《Computers, Materials & Continua》 SCIE EI 2020年第10期33-51,共19页
Nonlinear stochastic modeling has significant role in the all discipline of sciences.The essential control measuring features of modeling are positivity,boundedness and dynamical consistency.Unfortunately,the existing... Nonlinear stochastic modeling has significant role in the all discipline of sciences.The essential control measuring features of modeling are positivity,boundedness and dynamical consistency.Unfortunately,the existing stochastic methods in literature do not restore aforesaid control measuring features,particularly for the stochastic models.Therefore,these gaps should be occupied up in literature,by constructing the control measuring features numerical method.We shall present a numerical control measures for stochastic malaria model in this manuscript.The results of the stochastic model are discussed in contrast of its equivalent deterministic model.If the basic reproduction number is less than one,then the disease will be in control while its value greater than one shows the perseverance of disease in the population.The standard numerical procedures are conditionally convergent.The propose method is competitive and preserve all the control measuring features unconditionally.It has also been concluded that the prevalence of malaria in the human population may be controlled by reducing the contact rate between mosquitoes and humans.The awareness programs run by world health organization in developing countries may overcome the spread of malaria disease. 展开更多
关键词 Malaria disease model stochastic modelling stochastic methods CONVERGENCE
下载PDF
Algorithms and statistical analysis for linear structured weighted total least squares problem
17
作者 Jian Xie Tianwei Qiu +2 位作者 Cui Zhou Dongfang Lin Sichun Long 《Geodesy and Geodynamics》 EI CSCD 2024年第2期177-188,共12页
Weighted total least squares(WTLS)have been regarded as the standard tool for the errors-in-variables(EIV)model in which all the elements in the observation vector and the coefficient matrix are contaminated with rand... Weighted total least squares(WTLS)have been regarded as the standard tool for the errors-in-variables(EIV)model in which all the elements in the observation vector and the coefficient matrix are contaminated with random errors.However,in many geodetic applications,some elements are error-free and some random observations appear repeatedly in different positions in the augmented coefficient matrix.It is called the linear structured EIV(LSEIV)model.Two kinds of methods are proposed for the LSEIV model from functional and stochastic modifications.On the one hand,the functional part of the LSEIV model is modified into the errors-in-observations(EIO)model.On the other hand,the stochastic model is modified by applying the Moore-Penrose inverse of the cofactor matrix.The algorithms are derived through the Lagrange multipliers method and linear approximation.The estimation principles and iterative formula of the parameters are proven to be consistent.The first-order approximate variance-covariance matrix(VCM)of the parameters is also derived.A numerical example is given to compare the performances of our proposed three algorithms with the STLS approach.Afterwards,the least squares(LS),total least squares(TLS)and linear structured weighted total least squares(LSWTLS)solutions are compared and the accuracy evaluation formula is proven to be feasible and effective.Finally,the LSWTLS is applied to the field of deformation analysis,which yields a better result than the traditional LS and TLS estimations. 展开更多
关键词 Linear structured weighted total least SQUARES ERRORS-IN-VARIABLES Errors-in-observations Functional modelmodification stochastic model modification Accuracyevaluation
下载PDF
Assessment of prediction performances of stochastic models:Monthly groundwater level prediction in Southern Italy 被引量:1
18
作者 O Boulariah PA Mikhailov +2 位作者 A Longobardi AN Elizariev SG Aksenov 《Journal of Groundwater Science and Engineering》 2021年第2期161-170,共10页
Stochastic modelling of hydrological time series with insufficient length and data gaps is a serious challenge since these problems significantly affect the reliability of statistical models predicting and forecasting... Stochastic modelling of hydrological time series with insufficient length and data gaps is a serious challenge since these problems significantly affect the reliability of statistical models predicting and forecasting skills.In this paper,we proposed a method for searching the seasonal autoregressive integrated moving average(SARIMA)model parameters to predict the behavior of groundwater time series affected by the issues mentioned.Based on the analysis of statistical indices,8 stations among 44 available within the Campania region(Italy)have been selected as the highest quality measurements.Different SARIMA models,with different autoregressive,moving average and differentiation orders had been used.By reviewing the criteria used to determine the consistency and goodness-of-fit of the model,it is revealed that the model with specific combination of parameters,SARIMA(0,1,3)(0,1,2)_(12),has a high R^(2) value,larger than 92%,for each of the 8 selected stations.The same model has also good performances for what concern the forecasting skills,with an average NSE of about 96%.Therefore,this study has the potential to provide a new horizon for the simulation and reconstruction of groundwater time series within the investigated area. 展开更多
关键词 Groundwater level forecast stochastic modelling Southern Italy SEASONALITY HOMOGENEITY
下载PDF
Applicability of Markov chain-based stochastic model for bubbling fluidized beds
19
作者 庄亚明 陈晓平 刘道银 《Journal of Southeast University(English Edition)》 EI CAS 2015年第2期249-253,共5页
A Markov chain-based stochastic model (MCM) is developed to simulate the movement of particles in a 2D bubbling fluidized bed (BFB). The state spaces are determined by the discretized physical cells of the bed, an... A Markov chain-based stochastic model (MCM) is developed to simulate the movement of particles in a 2D bubbling fluidized bed (BFB). The state spaces are determined by the discretized physical cells of the bed, and the transition probability matrix is directly calculated by the results of a discrete element method (DEM) simulation. The Markov property of the BFB is discussed by the comparison results calculated from both static and dynamic transition probability matrices. The static matrix is calculated based on the Markov chain while the dynamic matrix is calculated based on the memory property of the particle movement. Results show that the difference in the trends of particle movement between the static and dynamic matrix calculation is very small. Besides, the particle mixing curves of the MCM and DEM have the same trend and similar numerical values, and the details show the time averaged characteristic of the MCM and also expose its shortcoming in describing the instantaneous particle dynamics in the BFB. 展开更多
关键词 stochastic model Markov chain discrete elementmethod (DEM) bubbling fluidized bed (BFB)
下载PDF
The quantified analysis of China's GM cotton yield capacity by C-D function and stochastic frontier model
20
作者 张涛 薛宝娣 《Hunan Agricultural Science & Technology Newsletter》 2004年第1期11-13,共3页
Using a modified C D function and stochastic frontier model, the paper analyzed China's cotton yield capacity and found that the yield and technical efficiency of China's cotton planting system can be increas... Using a modified C D function and stochastic frontier model, the paper analyzed China's cotton yield capacity and found that the yield and technical efficiency of China's cotton planting system can be increased by the use of genetically modified (GM) varieties. 展开更多
关键词 GM cotton yield capacity C D function stochastic frontier model
下载PDF
上一页 1 2 12 下一页 到第
使用帮助 返回顶部