In this paper,a stochastic epidemic system with both switching noise and white noise is proposed to research the dynamics of the diseases.Nonlinear incidence and vaccination strategies are also considered in the propo...In this paper,a stochastic epidemic system with both switching noise and white noise is proposed to research the dynamics of the diseases.Nonlinear incidence and vaccination strategies are also considered in the proposed model.By using the method of stochastic analysis,we point out the key parameters that determine the persistence and extinction of the diseases.Specifically,if R0^s is greater than 0,the stochastic system has a unique ergodic stationary distribution;while if R ^* is less than 0,the diseases will be extinct at an exponential rate.展开更多
基金Z.Qiu is supported by the National Natural Science Foundation of China(NSFC)grant No.11671206X.Zhao is supported by the Scholarship Foundation of China Scholarship Council grant No.201906840072+2 种基金T.Feng is supported by the Scholarship Foundation of China Scholarship Council grant No.201806840120the Out-standing Chinese and Foreign Youth Exchange Program of China Association of Science and Technologythe Fundamental Research Funds for the Central Universities grant No.30918011339.
文摘In this paper,a stochastic epidemic system with both switching noise and white noise is proposed to research the dynamics of the diseases.Nonlinear incidence and vaccination strategies are also considered in the proposed model.By using the method of stochastic analysis,we point out the key parameters that determine the persistence and extinction of the diseases.Specifically,if R0^s is greater than 0,the stochastic system has a unique ergodic stationary distribution;while if R ^* is less than 0,the diseases will be extinct at an exponential rate.