期刊文献+
共找到12篇文章
< 1 >
每页显示 20 50 100
Stochastic Variational Inference-Based Parallel and Online Supervised Topic Model for Large-Scale Text Processing 被引量:1
1
作者 Yang Li Wen-Zhuo Song Bo Yang 《Journal of Computer Science & Technology》 SCIE EI CSCD 2018年第5期1007-1022,共16页
Topic modeling is a mainstream and effective technology to deal with text data, with wide applications in text analysis, natural language, personalized recommendation, computer vision, etc. Among all the known topic m... Topic modeling is a mainstream and effective technology to deal with text data, with wide applications in text analysis, natural language, personalized recommendation, computer vision, etc. Among all the known topic models, supervised Latent Dirichlet Allocation (sLDA) is acknowledged as a popular and competitive supervised topic model. How- ever, the gradual increase of the scale of datasets makes sLDA more and more inefficient and time-consuming, and limits its applications in a very narrow range. To solve it, a parallel online sLDA, named PO-sLDA (Parallel and Online sLDA), is proposed in this study. It uses the stochastic variational inference as the learning method to make the training procedure more rapid and efficient, and a parallel computing mechanism implemented via the MapReduce framework is proposed to promote the capacity of cloud computing and big data processing. The online training capacity supported by PO-sLDA expands the application scope of this approach, making it instrumental for real-life applications with high real-time demand. The validation using two datasets with different sizes shows that the proposed approach has the comparative accuracy as the sLDA and can efficiently accelerate the training procedure. Moreover, its good convergence and online training capacity make it lucrative for the large-scale text data analyzing and processing. 展开更多
关键词 topic modeling large-scale text classification stochastic variational inference cloud computing online learning
原文传递
Tuning the Learning Rate for Stochastic Variational Inference
2
作者 Xi-Ming Li Ji-Hong Ouyang 《Journal of Computer Science & Technology》 SCIE EI CSCD 2016年第2期428-436,共9页
Stochastic variational inference (SVI) can learn topic models with very big corpora. It optimizes the variational objective by using the stochastic natural gradient algorithm with a decreasing learning rate. This ra... Stochastic variational inference (SVI) can learn topic models with very big corpora. It optimizes the variational objective by using the stochastic natural gradient algorithm with a decreasing learning rate. This rate is crucial for SVI; however, it is often tuned by hand in real applications. To address this, we develop a novel algorithm, which tunes the learning rate of each iteration adaptively. The proposed algorithm uses the Kullback-Leibler (KL) divergence to measure the similarity between the variational distribution with noisy update and that with batch update, and then optimizes the learning rates by minimizing the KL divergence. We apply our algorithm to two representative topic models: latent Dirichlet allocation and hierarchical Dirichlet process. Experimental results indicate that our algorithm performs better and converges faster than commonly used learning rates. 展开更多
关键词 stochastic variational inference online learning adaptive learning rate topic model
原文传递
Trust-Region Based Stochastic Variational Inference for Distributed and Asynchronous Networks
3
作者 FU Weiming QIN Jiahu +2 位作者 LING Qing KANG Yu YE Baijia 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2022年第6期2062-2076,共15页
Stochastic variational inference is an efficient Bayesian inference technology for massive datasets,which approximates posteriors by using noisy gradient estimates.Traditional stochastic variational inference can only... Stochastic variational inference is an efficient Bayesian inference technology for massive datasets,which approximates posteriors by using noisy gradient estimates.Traditional stochastic variational inference can only be performed in a centralized manner,which limits its applications in a wide range of situations where data is possessed by multiple nodes.Therefore,this paper develops a novel trust-region based stochastic variational inference algorithm for a general class of conjugate-exponential models over distributed and asynchronous networks,where the global parameters are diffused over the network by using the Metropolis rule and the local parameters are updated by using the trust-region method.Besides,a simple rule is introduced to balance the transmission frequencies between neighboring nodes such that the proposed distributed algorithm can be performed in an asynchronous manner.The utility of the proposed algorithm is tested by fitting the Bernoulli model and the Gaussian model to different datasets on a synthetic network,and experimental results demonstrate its effectiveness and advantages over existing works. 展开更多
关键词 Asynchronous networks Bayesian inference distributed algorithm stochastic variational inference trust-region method
原文传递
PI-VEGAN:Physics Informed Variational Embedding Generative Adversarial Networks for Stochastic Differential Equations
4
作者 Ruisong Gao Yufeng Wang +1 位作者 Min Yang Chuanjun Chen 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE CSCD 2023年第4期931-953,共23页
We present a new category of physics-informed neural networks called physics informed variational embedding generative adversarial network(PI-VEGAN),that effectively tackles the forward,inverse,and mixed problems of s... We present a new category of physics-informed neural networks called physics informed variational embedding generative adversarial network(PI-VEGAN),that effectively tackles the forward,inverse,and mixed problems of stochastic differential equations.In these scenarios,the governing equations are known,but only a limited number of sensor measurements of the system parameters are available.We integrate the governing physical laws into PI-VEGAN with automatic differentiation,while introducing a variational encoder for approximating the latent variables of the actual distribution of the measurements.These latent variables are integrated into the generator to facilitate accurate learning of the characteristics of the stochastic partial equations.Our model consists of three components,namely the encoder,generator,and discriminator,each of which is updated alternatively employing the stochastic gradient descent algorithm.We evaluate the effectiveness of PI-VEGAN in addressing forward,inverse,and mixed problems that require the concurrent calculation of system parameters and solutions.Numerical results demonstrate that the proposed method achieves satisfactory stability and accuracy in comparison with the previous physics-informed generative adversarial network(PI-WGAN). 展开更多
关键词 stochastic differential equations physics-informed variational inference generative adversarial networks inverse problems
原文传递
污水流量与天气数据融合的贝叶斯服务人口预测
5
作者 蔡惠民 曹扬 +1 位作者 陶政坪 谢真强 《计算机技术与发展》 2024年第8期181-188,共8页
传统基于污水日均流量及人均用水量的人口预测模型缺乏对天气因素的考虑,存在人口数量测算偏大等问题。为了综合考虑天气因素对污水日均流量的影响,提出了一种基于污水监测数据与天气数据融合的贝叶斯服务人口预测模型。通过引入天气影... 传统基于污水日均流量及人均用水量的人口预测模型缺乏对天气因素的考虑,存在人口数量测算偏大等问题。为了综合考虑天气因素对污水日均流量的影响,提出了一种基于污水监测数据与天气数据融合的贝叶斯服务人口预测模型。通过引入天气影响因子,同质化、异质化天气影响因子转化率,天气因素对污水日均流量的贡献量等,构建基于贝叶斯方法的污水日均流量生成模型。基于随机变分推理,获得生成模型参数的后验分布,进而实现各污水处理厂服务区域的服务人口预测模型。该模型能抵消区域天气因素的综合影响水平,能更合理地实现污水厂服务区域的人口数量预测。同时,通过统计分析对比了同质化、异质化天气影响因子转化率估计,天气因素对污水日均流量的影响等。该服务人口预测模型能进一步支撑城市人口的态势感知,对提升社会治理能力有重要意义。 展开更多
关键词 污水监测 多源数据融合 服务人口预测 贝叶斯分析 随机变分推理
下载PDF
基于不确定性的多元时间序列分类算法研究
6
作者 张旭 张亮 +1 位作者 金博 张红哲 《自动化学报》 EI CAS CSCD 北大核心 2023年第4期790-804,共15页
多元时间序列(Multivariate time series,MTS)分类是许多领域中的重要问题,准确的分类结果可以有效地帮助决策.当前的MTS分类算法在个体的表征学习阶段难以自动建模多元变量之间复杂的交互关系,并且无法评估分类结果的可信度,这会导致... 多元时间序列(Multivariate time series,MTS)分类是许多领域中的重要问题,准确的分类结果可以有效地帮助决策.当前的MTS分类算法在个体的表征学习阶段难以自动建模多元变量之间复杂的交互关系,并且无法评估分类结果的可信度,这会导致模型性能受限,以及缺乏具备统计意义的可靠性解释.本文提出了一种基于不确定性的多元时间序列分类算法,变分贝叶斯共享图神经网络,即VBSGNN(Variational Bayes shared graph neural network).首先通过图神经网络(Graph neural network,GNN)提取多元变量之间的交互特征,然后利用贝叶斯神经网络(Bayesian neural network,BNN)为预测过程引入了不确定性.最后在10个公开MTS数据集上进行了算法实验,并与当前提出的7类算法进行了比较,结果表明VBSGNN可有效学习多元变量之间的交互关系,提升了分类效果,并使得模型具备一定的可靠性评估能力. 展开更多
关键词 多元时间序列预测 图神经网络 不确定性 随机变分推断 贝叶斯神经网络
下载PDF
加权网络的在线结构学习算法 被引量:3
7
作者 蒋晓娟 张文生 《模式识别与人工智能》 EI CSCD 北大核心 2016年第2期122-130,共9页
随着互联网技术的进步,网络关系数据不断涌现,规模不断膨胀,网络数据的结构分析成为机器学习和网络应用领域的研究热点.为了提高推理效率,文中提出加权网络的在线结构学习算法.首先,使用指数族分布描述加权网络的生成过程.然后,利用随... 随着互联网技术的进步,网络关系数据不断涌现,规模不断膨胀,网络数据的结构分析成为机器学习和网络应用领域的研究热点.为了提高推理效率,文中提出加权网络的在线结构学习算法.首先,使用指数族分布描述加权网络的生成过程.然后,利用随机变分推理方法,构建加权网络的在线结构学习算法.该算法采用基于重采样技术的增量学习方式,降低优化的时间复杂度.最后,利用基于自然梯度理论的随机优化方法进一步加速学习过程,实现网络社区结构的在线学习和实时优化.通过与传统的离线学习算法进行对比实验,验证文中算法能高效快速地实现复杂加权网络的社区结构学习,并在较短时间内达到较高的预测精度. 展开更多
关键词 加权网络 概率图模型 随机变分推理 在线学习
下载PDF
基于扩散方法的分布式随机变分推断算法 被引量:2
8
作者 付维明 秦家虎 朱英达 《自动化学报》 EI CAS CSCD 北大核心 2021年第1期92-99,共8页
分布式网络上的聚类、估计或推断具有广泛的应用,因此引起了许多关注.针对已有的分布式变分贝叶斯(Variational Bayesian,VB)算法效率低,可扩展性差的问题,本文借用扩散方法提出了一种新的分布式随机变分推断(Stochastic variational in... 分布式网络上的聚类、估计或推断具有广泛的应用,因此引起了许多关注.针对已有的分布式变分贝叶斯(Variational Bayesian,VB)算法效率低,可扩展性差的问题,本文借用扩散方法提出了一种新的分布式随机变分推断(Stochastic variational inference,SVI)算法,其中我们选择自然梯度法进行参数本地更新并选择对称双随机矩阵作为节点间参数融合的系数矩阵.此外,我们还为所提出的分布式SVI算法提出了一种对异步网络的适应机制.最后,我们在伯努利混合模型(Bernoulli mixture model,BMM)和隐含狄利克雷分布(Latent Dirichlet allocation,LDA)模型上测试所提出的分布式SVI算法的可行性,实验结果显示其在许多方面的性能优于集中式SVI算法. 展开更多
关键词 分布式算法 随机变分推断 扩散方法 异步网络 主题模型
下载PDF
面向大规模数据主题建模的方差减小的随机变分推理算法 被引量:1
9
作者 刘张虎 程春玲 《计算机应用》 CSCD 北大核心 2018年第6期1675-1681,共7页
随机变分推理(SVI)已被成功应用于在包括主题模型在内的众多类型的模型。虽然它将推理问题映射到涉及随机梯度的优化问题,使其扩展到处理大规模数据集,但是SVI算法中随机梯度固有的噪声使其产生较大的方差,阻碍了快速收敛。为此,对SVI... 随机变分推理(SVI)已被成功应用于在包括主题模型在内的众多类型的模型。虽然它将推理问题映射到涉及随机梯度的优化问题,使其扩展到处理大规模数据集,但是SVI算法中随机梯度固有的噪声使其产生较大的方差,阻碍了快速收敛。为此,对SVI作出改进,提出一种方差减小的SVI(VR-SVI)算法。首先,采取滑动窗口的方法重新计算随机梯度中的噪声项,构建新的随机梯度,减少了噪声对随机梯度的影响;然后,对提出的算法可在SVI基础上使得随机梯度的方差减小进行证明;最后,讨论窗口大小对算法的影响,并分析算法的收敛性。实验结果表明,VRSVI算法既减小了随机梯度的方差,又节省了计算时间,可达到快速收敛的效果。 展开更多
关键词 随机变分推理 滑动窗口 随机梯度 方差减小 主题建模
下载PDF
大规模网络广义社区发现随机变分推理算法
10
作者 柴变芳 赵晓鹏 《济南大学学报(自然科学版)》 CAS 北大核心 2016年第5期334-340,共7页
流行度-生成度随机块(popularity-productivity stochastic block,PPSB)模型能发现网络广义社区,但该模型易过拟合,且不能有效处理大规模网络,故提出一个3层贝叶斯网络广义社区发现(generalized PPSB,GPPSB)模型,并给出实现大规模链接... 流行度-生成度随机块(popularity-productivity stochastic block,PPSB)模型能发现网络广义社区,但该模型易过拟合,且不能有效处理大规模网络,故提出一个3层贝叶斯网络广义社区发现(generalized PPSB,GPPSB)模型,并给出实现大规模链接网络和内容网络广义社区发现的随机变分推理(stochastic variational inference,SVI)算法GPPSB-SVI和GPPSB-C-SVI。不同规模人工网络和实际网络上的实验结果表明:GPPSB-SVI准确性优于已有流行大规模网络社区发现算法,效率高于基于PPSB模型的广义社区发现算法;GPPSB-C-SVI准确性优于GPPSB-SVI算法;GPPSB模型引入节点隶属度和类间链接概率矩阵的先验分布,可更好地对网络建模,其参数估计算法GPPSB-SVI、GPPSB-C-SVI可更有效地实现大规模网络广义社区发现。 展开更多
关键词 大规模网络 内容网络 随机变分推理 广义社区发现
下载PDF
利用标注者相关性的深度生成式众包学习
11
作者 李绍园 韦梦龙 黄圣君 《软件学报》 EI CSCD 北大核心 2022年第4期1274-1286,共13页
传统监督学习需要训练样本的真实标记信息,而在很多情况下,真实标记并不容易收集.与之对比,众包学习从多个可能犯错的非专家收集标注,通过某种融合方式估计样本的真实标记.注意到现有深度众包学习工作对标注者相关性建模不足,而非深度... 传统监督学习需要训练样本的真实标记信息,而在很多情况下,真实标记并不容易收集.与之对比,众包学习从多个可能犯错的非专家收集标注,通过某种融合方式估计样本的真实标记.注意到现有深度众包学习工作对标注者相关性建模不足,而非深度众包学习方面的工作表明,标注者相关性建模利用有助于改善学习效果.提出一种深度生成式众包学习方法,以结合深度神经网络优势及利用标注者相关性.该模型由深度神经网络分类器先验和标注生成过程组成,其中,标注生成过程通过引入各类别内标注者能力的混合模型以建模标注者相关性.为自适应地匹配数据及模型复杂度,实现了完全贝叶斯推断.基于结构变分自编码器的自然梯度随机变分推断技术,将共轭参数变分消息传递与神经网络参数随机梯度下降结合到统一框架,实现端到端的高效优化.在22个真实众包数据集上的实验结果验证了该方法的有效性. 展开更多
关键词 众包学习 深度生成式模型 标注者相关性 贝叶斯 自然梯度随机变分推断
下载PDF
基于狄利克雷混合模型的图像分类算法研究
12
作者 曹会蕊 关文博 杨帆 《数字技术与应用》 2021年第9期109-111,共3页
本文针对狄利克雷混合模型提出了有效的随机变分推理算法。首先,构建抽样数据的变分目标函数的下界;其次,利用随机优化和自然梯度下降算法推导出变分后验分布的解析解表达式;最后,将其应用于图像分类问题,实验验证了该算法的有效性。
关键词 图像分类 混合模型 狄利克雷分布 随机变分推理
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部