本文研究van der Pol-Duffing型的非线性振子在随机干扰和随机参数联合作用下的Hopf分叉现象。本文所得结果证实了当系统处在于Hopf分叉点附近时,对系统的参数的变化具有敏感性。在研究过程中,我们利用Markov扩散过程逼近系统的随机响应...本文研究van der Pol-Duffing型的非线性振子在随机干扰和随机参数联合作用下的Hopf分叉现象。本文所得结果证实了当系统处在于Hopf分叉点附近时,对系统的参数的变化具有敏感性。在研究过程中,我们利用Markov扩散过程逼近系统的随机响应,得到了沿稳定矩的概率1稳定和矩稳定的条件。对于非线性振子,我们得到了振幅过程的稳态概论密度函数。研究发现,确定性系统的Hopf分叉点在随机参数作用下具有漂移现象,这种漂移是由系统的性质所决定的,当分叉点为超临界的,分叉点向前漂移;而当分叉点为亚临界时,这种漂移是向后的。当系统处在外部随机干扰作用下时,系统出现非零响应。另外我们发现,稳态矩的分叉与其阶数无关。展开更多
研究了Van der Pol振子在宽带随机外部激励和宽带随机参数激励联合作用下的Hopf分叉.文中采用随机平均法将Van del Pol方程的幅值响应过程逼近为一维的Markov扩散过程.利用FPK方程的直接积分,得到了幅值响应的稳态概率密度函数.在此基础...研究了Van der Pol振子在宽带随机外部激励和宽带随机参数激励联合作用下的Hopf分叉.文中采用随机平均法将Van del Pol方程的幅值响应过程逼近为一维的Markov扩散过程.利用FPK方程的直接积分,得到了幅值响应的稳态概率密度函数.在此基础上,分析了系统在分叉点附近由于随机扰动的影响带来的系统局域行为的变化.从本文的研究中发现,非线性系统在随机外部激励以及两种不同的随机参数激励作用下,其分叉行为与确定性系统相比会有明显的变化。展开更多
The PDFs(probability density functions) and probability of a ship rolling under the random parametric and forced excitations were studied by a semi-analytical method. The rolling motion equation of the ship in random ...The PDFs(probability density functions) and probability of a ship rolling under the random parametric and forced excitations were studied by a semi-analytical method. The rolling motion equation of the ship in random oblique waves was established. The righting arm obtained by the numerical simulation was approximately fitted by an analytical function. The irregular waves were decomposed into two Gauss stationary random processes, and the CARMA(2, 1) model was used to fit the spectral density function of parametric and forced excitations. The stochastic energy envelope averaging method was used to solve the PDFs and the probability. The validity of the semi-analytical method was verified by the Monte Carlo method. The C11 ship was taken as an example, and the influences of the system parameters on the PDFs and probability were analyzed. The results show that the probability of ship rolling is affected by the characteristic wave height, wave length, and the heading angle. In order to provide proper advice for the ship’s manoeuvring, the parametric excitations should be considered appropriately when the ship navigates in the oblique seas.展开更多
文摘本文研究van der Pol-Duffing型的非线性振子在随机干扰和随机参数联合作用下的Hopf分叉现象。本文所得结果证实了当系统处在于Hopf分叉点附近时,对系统的参数的变化具有敏感性。在研究过程中,我们利用Markov扩散过程逼近系统的随机响应,得到了沿稳定矩的概率1稳定和矩稳定的条件。对于非线性振子,我们得到了振幅过程的稳态概论密度函数。研究发现,确定性系统的Hopf分叉点在随机参数作用下具有漂移现象,这种漂移是由系统的性质所决定的,当分叉点为超临界的,分叉点向前漂移;而当分叉点为亚临界时,这种漂移是向后的。当系统处在外部随机干扰作用下时,系统出现非零响应。另外我们发现,稳态矩的分叉与其阶数无关。
文摘研究了Van der Pol振子在宽带随机外部激励和宽带随机参数激励联合作用下的Hopf分叉.文中采用随机平均法将Van del Pol方程的幅值响应过程逼近为一维的Markov扩散过程.利用FPK方程的直接积分,得到了幅值响应的稳态概率密度函数.在此基础上,分析了系统在分叉点附近由于随机扰动的影响带来的系统局域行为的变化.从本文的研究中发现,非线性系统在随机外部激励以及两种不同的随机参数激励作用下,其分叉行为与确定性系统相比会有明显的变化。
基金financially supported by the Project of"Nonlinear Wave Excitation and Response of Surface Vehicle"(Grant No.B2420132001)the Natural Science Foundation of Tianjin(Grant No.15JCQNJC07700)
文摘The PDFs(probability density functions) and probability of a ship rolling under the random parametric and forced excitations were studied by a semi-analytical method. The rolling motion equation of the ship in random oblique waves was established. The righting arm obtained by the numerical simulation was approximately fitted by an analytical function. The irregular waves were decomposed into two Gauss stationary random processes, and the CARMA(2, 1) model was used to fit the spectral density function of parametric and forced excitations. The stochastic energy envelope averaging method was used to solve the PDFs and the probability. The validity of the semi-analytical method was verified by the Monte Carlo method. The C11 ship was taken as an example, and the influences of the system parameters on the PDFs and probability were analyzed. The results show that the probability of ship rolling is affected by the characteristic wave height, wave length, and the heading angle. In order to provide proper advice for the ship’s manoeuvring, the parametric excitations should be considered appropriately when the ship navigates in the oblique seas.